: The aim of this study was to evaluate the ability of second trimester plasma glycated CD59 (pGCD59), a novel biomarker, to predict the results of the 2 h 75 g oral glucose tolerance test at 24–28 weeks of gestation, employing the 2013 World Health Organisation criteria. This was a prospective study of 378 pregnant women. The ability of pGCD59 to predict gestational diabetes (GDM) was assessed using adjusted ROC curves for maternal age, BMI, maternal ethnicity, parity, previous GDM, and family history of diabetes. The pGCD59 levels were significantly higher in women with GDM compared to women with normal glucose tolerance (p = 0.003). The pGCD59 generated an adjusted AUC for identifying GDM cases of 0.65 (95% CI: 0.58–0.71, p < 0.001). The pGCD59 predicted GDM status diagnosed by a fasting glucose value of 5.1 mmol/L with an adjusted AUC of 0.74 (95%CI: 0.65–0.81, p < 0.001). Analysis of BMI subgroups determined that pGCD59 generated the highest AUC in the 35 kg/m2 ≤ BMI < 40 kg/m2 (AUC: 0.84 95%CI: 0.69–0.98) and BMI ≥ 40 kg/m2 (AUC: 0.96 95%CI: 0.86–0.99) categories. This study found that second trimester pGCD59 is a fair predictor of GDM status diagnosed by elevated fasting glucose independent of BMI and an excellent predictor of GDM in subjects with a very high BMI.
AimsGestational diabetes (GDM) is associated with the development of postpartum (PP) glucose intolerance. Plasma glycated CD59 (pGCD59) is an emerging biomarker for the detection of hyperglycaemia. The aim of this study was to assess the ability of PP pGCD59 to predict the development of PP GI as defined by the 2 h 75 g OGTT using the ADA criteria, in a cohort of women diagnosed with prior GDM in the index pregnancy using the 2 h 75 g OGTT at 24–28 weeks of gestation according to the World Health Organization (WHO) 2013 criteria.MethodsOf the 2017 pregnant women recruited prospectively 140 women with gestational diabetes had samples for pGCD59 taken PP at the time of the OGTT. The ability of pGCD59 to predict the results of the PP OGTT was assessed using nonparametric receiver operating characteristic (ROC) curves.ResultsWomen with PP glucose intolerance had significantly higher PP pGCD59 levels compared to women with normal glucose tolerance PP (3.8 vs. 2.7 SPU). PP pGCD59 identified women who developed glucose intolerance PP with an AUC of 0.80 (95% CI: 0.70–0.91). A PP pGCD59 cut‐off value of 1.9 SPU generated a sensitivity of 100% (95% CI: 83.9–100), specificity of 16.9% (95% CI: 9.8–26.3), positive predictive value of 22.1% (95% CI: 21.0–22.6), and negative predictive value of 100% (95% CI: 87.4–100). PP fasting plasma glucose generated an AUC of 0.96 (95% CI: 0.89–0.99) for the identification of PP glucose intolerance.ConclusionOur study found that PP pGCD9 may be a promising biomarker to identify women not requiring PP glucose intolerance screening using the traditional OGTT. While the diagnostic accuracy of pGCD59 is good, fasting plasma glucose remains a better test for the identification of PP glucose intolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.