In this article, we apply the method of spatio-temporal filtering (STF) to electroencephalographic (EEG) data processing for brain responses classification. The method operates similarly to linear discriminant analysis (LDA) but contrary to most applied classifiers, it uses the whole recorded EEG signal as a source of information instead of the precisely selected brain responses, only. This way it avoids the limitations of LDA and improves the classification accuracy. We emphasize the significance of the STF learning phase. To preclude the negative influence of super-Gaussian artifacts on accomplishment of this phase, we apply the discrete cosine transform (DCT) based method for their rejection. Later, we estimate the noise covariance matrix using all data available, and we improve the STF template construction. The further modifications are related with the constructed filters operation and consist in the changes of the STF interpretation rules. Consequently, a new tool for evoked potentials (EPs) classification has been developed. Applied to the analysis of signals stored in a publicly available database, prepared for the assessment of modern algorithms aimed in EPs detection (in the frames of the 2019 IFMBE Scientific Challenge), it allowed to achieve the second best result, very close to the best one, and significantly better than the ones achieved by other contestants of the challenge. Index Terms-Brain-computer interfaces (BCI), discrete cosine transform (DCT), generalized matched filtering (GMF), spatiotemporal filtering (STF), visual evoked potentials (EPs).
I. INTRODUCTIONC APABILITY for quick and reliable classification of brain responses plays a key role in designing modern and efficient brain-computer interfaces (BCI). Responses of the brain in BCI are triggered by external (visual, auditory) or internal (mental simulation of a physical action) stimuli, therefore, are called as evoked potentials (EP). Among a group of brain's responses to a visual stimulus, P300 is characterized by the greatest Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.