Tendrils can be found in different plant species. In legumes such as pea, tendrils are modified leaves produced by the vegetative meristem but in the grape vine, a same meristem is used to either form a tendril or an inflorescence. Passiflora species originated in ecosystems in which there is dense vegetation and competition for light. Thus climbing on other plants in order to reach regions with higher light using tendrils is an adaptive advantage. In Passiflora species, after a juvenile phase, every leaf has a subtending vegetative meristem, and a separate meristem that forms both flowers and a tendril. Thus, flowers are formed once a tendril is formed yet whether or not this flower will reach bloom depends on the environment. For example, in Passiflora edulis flowers do not develop under shaded conditions, so that tendrils are needed to bring the plant to positions were flowers can develop. This separate meristem generally forms a single tendril in different Passiflora species yet the number and position of flowers formed from the same meristem diverges among species. Here we display the variation among species as well as variation within a single species, P. edulis. We also show that the number of flowers within a specific genotype can be modulated by applying Cytokinins. Finally, this separate meristem is capable of transforming into a leaf-producing meristem under specific environmental conditions. Thus, behind what appears to be a species-specific rigid program regarding the fate of this meristem, our study helps to reveal a plasticity normally restrained by genetic, hormonal and environmental constraints.
ObjectiveKlotho is an aging-modulating protein expressed mainly in the kidneys and choroid plexus, which can also be shed, released into the circulation and act as a hormone. Klotho deficient mice are smaller compared to their wild-type counterparts and their somatotropes show marked atrophy and reduced number of secretory granules. Recent data also indicated an association between klotho levels and growth hormone (GH) levels in acromegaly. We aimed to study the association between klotho levels and GH deficiency (GHD) in children with growth impairment.DesignProspective study comprising 99 children and adolescents (aged 9.0±3.7 years, 49 male) undergoing GH stimulation tests for short stature (height-SDS = −2.1±0.6). Klotho serum levels were measured using an α-klotho ELISA kit.ResultsKlotho levels were significantly lower (p<0.001) among children with organic GHD (n = 11, 727±273 pg/ml) compared to both GH sufficient participants (n = 59, 1497±754 pg/ml) and those with idiopathic GHD (n = 29, 1645±778 pg/ml). The difference between GHS children and children with idiopathic GHD was not significant. Klotho levels positively correlated with IGF-1- standard deviation scores (SDS) (R = 0.45, p<0.001), but were not associated with gender, pubertal status, age or anthropometric measurements.ConclusionsWe have shown, for the first time, an association between low serum klotho levels and organic GHD. If validated by additional studies, serum klotho may serve as novel biomarker of organic GHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.