Large-scale IoT services such as healthcare, smart cities and marine monitoring are pervasive in Cyber-physical environments strongly supported by Internet technologies and Fog computing. Complex IoT services are increasingly composed of sensors, devices, and compute resources within Fog computing infrastructures. The orchestration of such applications can be leveraged to alleviate the difficulties of maintenance and enhance data security and system reliability. However, how to efficiently deal with dynamic variations and transient operational behavior is a crucial challenge within the context of choreographing complex services. Furthermore, with the rapid increase of the scale of IoT deployments, the heterogeneity, dynamicity, and uncertainty within Fog environments and increased computational complexity further dramatically aggravate this challenge. This article provides an overview of the core issues, challenges and future research directions in Fog-enabled orchestration for IoT services. Additionally, we present early experiences of an orchestration scenario, demonstrating the feasibility and initial results of using a distributed genetic algorithm in this context.
Abstract-Social Media involve many shared items, such as photos, which may concern more than one user. The first challenge we address in this paper is to develop a way for users of such items to take a decision on to whom to share these items. This is not an easy problem, as users' privacy preferences for the same item may conflict, so an approach that just merges in some way the users' privacy preferences may provide unsatisfactory results. We propose a negotiation mechanism for users to agree on a compromise for the conflicts found. The second challenge we address in this paper relates to the exponential complexity of such a negotiation mechanism, which could make it too slow to be used in practice in a Social Media infrastructure. To address this, we propose heuristics that reduce the complexity of the negotiation mechanism and show how substantial benefits can be derived from the use of these heuristics through extensive experimental evaluation that compares the performance of the negotiation mechanism with and without these heuristics. Moreover, we show that one such heuristic makes the negotiation mechanism produce results fast enough to be used in actual Social Media infrastructures with near-optimal results.
Abstract-Society is moving towards a socio-technical ecosystem in which physical and virtual dimensions of life are intertwined and where people interactions ever more take place with or are mediated by machines. Hybrid Diversity-aware Collective Adaptive Systems (HDA-CAS) is a new generation of sociotechnical systems where humans and machines synergetically complement each other and operate collectively to achieve their goals. HDA-CAS introduce the fundamental properties of hybridity and collectiveness, hiding from the users the complexities associated with managing the collaboration and coordination of machine and human computing elements. In this paper we present an HDA-CAS system called SmartSociety, supporting computations with hybrid human/machine collectives. We describe the platform's architecture and functionality, validate it on two real-world scenarios involving human and machine elements and present a performance evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.