During the past years, the topic sensitive skin became one of the most important fields in dermatology. The tremendous interest is based on several studies showing that about 50% of the population declares to have sensitive skin. The human thermoreceptor hTRPV1 was previously identified to contribute to this skin condition while facilitating neurogenic inflammation leading to hyperalgesia. Furthermore, skin sensitivity towards capsaicin, a natural activator of TRPV1, was shown to correlate with sensitive skin. In a screening campaign based on recombinant HEK293-cells stably transfected with hTRPV1, the selective antagonist trans-4-tert-butylcyclohexanol was identified. This antagonist is able to inhibit capsaicin-induced hTRPV1 activation with an IC(50) value of 34 ± 5 μm tested in HEK293-cells as well as in electrophysiological recordings performed in oocytes expressing hTRPV1. Strikingly, in a clinical study with 30 women using topical treatment with o/w emulsions containing 31.6 ppm capsaicin, we were able to show that 0.4% of this inhibitor significantly reduces capsaicin-induced burning (P < 0.0001) in vivo. Thus trans-4-tert-butylcyclohexanol has the potential as a novel bioactive for the treatment of sensitive skin.
From Penicillium janczewskii, obtained from a marine sample, two new diastereomeric quinolinones, 3S,4R-dihydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (1) and 3R,4R-dihydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (2), were identified, along with two known alkaloids, peniprequinolone (3) and 3-methoxy-4-hydroxy-4-(4'-methoxyphenyl)-3,4-dihydro-2(1H)-quinolinone (4). Cytotoxicity testing on eight tumor cell lines revealed a moderate specificity of 2 on SKOV-3 cells.
Sweating is an important physiological process to regulate body temperature in humans, and various disorders are associated with dysregulated sweat formation. Primary sweat secretion in human eccrine sweat glands involves Ca(2+) -activated Cl(-) channels (CaCC). Recently, members of the TMEM16 family were identified as CaCCs in various secretory epithelia; however, their molecular identity in sweat glands remained elusive. Here, we investigated the function of TMEM16A in sweat glands. Gene expression analysis revealed that TMEM16A is expressed in human NCL-SG3 sweat gland cells as well as in isolated human eccrine sweat gland biopsy samples. Sweat gland cells express several previously described TMEM16A splice variants, as well as one novel splice variant, TMEM16A(acΔe3) lacking the TMEM16A-dimerization domain. Chloride flux assays using halide-sensitive YFP revealed that TMEM16A is functionally involved in Ca(2+) -dependent Cl(-) secretion in NCL-SG3 cells. Recombinant expression in NCL-SG3 cells showed that TMEM16A(acΔe3) is forming a functional CaCC, with basal and Ca(2+) -activated Cl(-) permeability distinct from canonical TMEM16A(ac). Our results suggest that various TMEM16A isoforms contribute to sweat gland-specific Cl(-) secretion providing opportunities to develop sweat gland-specific therapeutics for treatment of sweating disorders.
Both in-house human genetic and literature data have converged on the identification of leukotriene 4 hydrolase (LTA(4)H) as a key target for the treatment of cardiovascular disease. We combined fragment-based crystallography screening with an iterative medicinal chemistry effort to optimize inhibitors of LTA(4)H. Ligand efficiency was followed throughout our structure-activity studies. As applied within the context of LTA(4)H inhibitor design, the chemistry team was able to design a potent compound 20 (DG-051) (K(d) = 26 nM) with high aqueous solubility (>30 mg/mL) and high oral bioavailability (>80% across species) that is currently undergoing clinical evaluation for the treatment of myocardial infarction and stroke. The structural biology-chemistry interaction described in this paper provides a sound alternative to conventional screening techniques. This is the first example of a gene-to-clinic paradigm enabled by a fragment-based drug discovery effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.