The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity.
The enormous sequence diversity within T cell receptor (TCR) repertoires allows specific TCR sequences to be used as lineage markers for T cells that derive from a common progenitor. We have developed a computational method, called TraCeR, to reconstruct full-length, paired TCR sequences from T lymphocyte single-cell RNA-seq by combining existing assembly and alignment programs with “combinatorial recombinome” sequences comprising all possible TCR combinations. We validate this method to quantify its accuracy and sensitivity. Inferred TCR sequences reveal clonal relationships between T cells whilst the cells’ complete transcriptional landscapes can be quantified from the remaining RNA-seq data. This provides a powerful tool to link T cell specificity with functional response and we demonstrate this by determining the distribution of members of expanded T cell clonotypes in a mouse Salmonella infection model. Members of the same clonotype span early activated CD4+ T cells, as well as mature effector and memory cells.
Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a * Correspondence to: st9@sanger.ac.uk, Ashraful.Haque@qimrberghofer.edu.au or stegle@ebi.ac.uk. # denotes equal contribution † denotes equal contribution Author contributions TL and KRJ performed the single-cell RNA-seq experiments. VS developed the GPfates model in collaboration with MZ, NDL, OS and SAT. DFR and WRH generated the PbTII mouse model. KRJ, RM, IS, MSFS, LGF, ASN, UL, FSFG, PTB and CRE performed the mouse experiments. TL, VS, KRJ, LHL and FOB analysed the data and interpreted the results MJTS performed the TCR clonality analysis. TL, KRJ, RM, OB, AH and SAT designed the experiments. OS, AH and SAT cosupervised the study. TL, VS, KRJ, OS, AH and SAT wrote the manuscript. All authors have read and approved the manuscript. Competing interestsThe authors declare no competing interests. Data and materials availabilityThe data presented in this paper is publically available in the ArrayExpress database with accession number E-MTAB-4388. Europe PMC Funders Group Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.
Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging impacts transcriptional dynamics using single-cell RNA-sequencing of unstimulated and stimulated naive and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch resulting in tightly regulated gene expression, characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program, and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.