Lipoprotein(a) (Lp(a)) consists of a low-density lipoprotein-like particle and a covalently linked highly glycosylated protein, called apolipoprotein(a) (apo(a)). Lp(a) derives from the liver but its catabolism is still poorly understood. Plasma concentrations of this highly atherogenic lipoprotein are elevated in hemodialysis (HD) patients, suggesting the kidney to be involved in Lp(a) catabolism. We therefore compared the in vivo turnover rates of both protein components from Lp(a) (i.e. apo(a) and apoB) determined by stable-isotope technology in seven HD patients with those of nine healthy controls. The fractional catabolic rate (FCR) of Lp(a)-apo(a) was significantly lower in HD patients compared with controls (0.164+/-0.114 vs 0.246+/-0.067 days(-1), P=0.042). The same was true for the FCR of Lp(a)-apoB (0.129+/-0.097 vs 0.299+/-0.142 days(-1), P=0.005). This resulted in a much longer residence time of 8.9 days for Lp(a)-apo(a) and 12.9 days for Lp(a)-apoB in HD patients compared with controls (4.4 and 3.9 days, respectively). The production rates of apo(a) and apoB from Lp(a) did not differ significantly between patients and controls and were even lower for patients when compared with controls with similar Lp(a) plasma concentrations. This in vivo turnover study is a further crucial step in understanding the mechanism of Lp(a) catabolism: the loss of renal function in HD patients causes elevated Lp(a) plasma levels because of decreased clearance but not increased production of Lp(a). The prolonged retention time of Lp(a) in HD patients might importantly contribute to the high risk of atherosclerosis in these patients.
Objective-Premature cardiovascular disease is the leading cause of death in patients with end-stage renal disease treated by hemodialysis (HD). Low-density lipoprotein (LDL) levels are not generally increased in HD patients, but their LDL metabolism is still poorly understood. We therefore investigated the in vivo metabolism of apoB-containing lipoproteins in two different ethnic populations of HD patients and controls. Methods and Results-We performed stable isotope kinetic studies using a primed constant infusion of deuterated leucine in 12 HD patients and 13 healthy controls. Tracer/tracee ratio of apoB was determined by means of gas chromatography/mass spectrometry, and the modeling program SAAMII was used to estimate the fractional catabolic rate (FCR) of apoB. Mean LDL-apoB plasma concentrations were almost identical in both groups (HD: 95Ϯ30 mg/dL, controls: 91Ϯ40 mg/dL), whereas LDL-apoB FCR was 50% lower in HD patients as compared with controls (0.22Ϯ0.12 days Ϫ1 versus 0.46Ϯ0.20 days Ϫ1 , Pϭ0.001) with concomitantly decreased production rates of LDL. T hirty yeas ago, Lindner and colleagues recognized in their seminal report the excessive risk of cardiovascular disease for hemodialysis (HD) patients. 1 The prevalence and incidence of cardiovascular disease is much higher in HD patients, and current mortality rates are Ϸ10 to 20 times greater than the general population with rates even higher at young ages. 2 A remarkable number of factors, including dyslipoproteinemia, chronic inflammation, hypertension, oxidative stress, elevated homocysteine, and anemia, that may contribute to this increased frequency of atherosclerotic complications have been identified. 3,4 HD patients are characterized by a complex plasma dyslipoproteinemic profile. 5 The most notable quantitative abnormalities are elevated plasma triglyceride and very lowdensity lipoprotein (VLDL) levels with a prevalence of 25% to 75%, 6,7 increased levels of atherogenic intermediate density lipoprotein (IDL) 8 and lipoprotein(a) 9 particles, and decreased high-density lipoprotein (HDL) levels. 10 Interestingly, total and low-density lipoprotein (LDL) cholesterol plasma levels are usually normal or even subnormal in HD patients as compared with healthy controls. 11,12 In addition to quantitative changes in lipoprotein particles, numerous compositional and qualitative lipoprotein changes have been demonstrated as well. These include accumulation of small dense LDL 13 as well as oxidation, glycation, and carbamylation of LDL. The association of small dense LDL Original
Extracellular [γ-32P]ATP added to a suspension of goldfish hepatocytes can be hydrolyzed to ADP plus γ-32Pidue to the presence of an ecto-ATPase located in the plasma membrane. Ecto-ATPase activity was a hyperbolic function of ATP concentration ([ATP]), with apparent maximal activity of 8.3 ± 0.4 nmol Pi ⋅ (106cells)−1 ⋅ min−1and substrate concentration at which a half-maximal hydrolysis rate is obtained of 667 ± 123 μM. Ecto-ATPase activity was inhibited 70% by suramin but was insensitive to inhibitors of transport ATPases. Addition of 5 μM [α-32P]ATP to the hepatocyte suspension induced the extracellular release of α-32Pi[8.2 pmol ⋅ (106cells)−1 ⋅ min−1] and adenosine, suggesting the presence of other ectonucleotidase(s). Exposure of cell suspensions to 5 μM [2,8-3H]ATP resulted in uptake of [2,8-3H]adenosine at 7.9 pmol ⋅ (106cells)−1 ⋅ min−1. Addition of low micromolar [ATP] strongly increased cytosolic free Ca2+([Formula: see text]). This effect could be partially mimicked by adenosine 5′- O-(3-thiotriphosphate), a nonhydrolyzable analog of ATP. The blockage of both glycolysis and oxidative phosphorylation led to a sixfold increase of[Formula: see text] and an 80% decrease of intracellular ATP, but ecto-ATPase activity was insensitive to these metabolic changes. Ecto-ATPase activity represents the first step leading to the complete hydrolysis of extracellular ATP, which allows 1) termination of the action of ATP on specific purinoceptors and 2) the resulting adenosine to be taken up by the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.