The results support our earlier proposal in normal cell lines that ATIP is an important component of the cellular response to AT(2)-receptor activation. The results further suggest that a critical level of ATIP is required to mediate the effect of AT(2)-receptor activation to inhibit EGF mediated increases in cell growth. They also suggest that EGF may in part induce cell growth by suppressing the level of ATIP expression.
To investigate the expression of the unknown angiotensin II type 2 receptor interacting protein (ATIP) isoforms in the rat we used the known sequences of human and mouse ATIP to design sequencing primers to enable us to sequence rat ATIP3 and ATIP4. Exon 4, which is present in human but not mouse ATIP, was not identified in the coding region of rat ATIP. The expression levels of these genes in a range of rat tissues were examined, and we concluded that there is little similarity in the relative tissue distribution of the various ATIP isoforms in rat and human.
Previously ATIP has been shown to inhibit growth factor signalling in cancerous cells via an interaction with the AT2-receptor. This is the first report to identify that ATIP may have a similar role in other disease states characterised by excessive growth and indicates that for ATIP3, at least, an interaction with the AT2-receptor may not be necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.