Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II (pol II). The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Summary
The torpedo model of transcription termination asserts that the exonuclease Xrn2 attacks the 5′PO4-end exposed by nascent RNA cleavage and chases down the RNA polymerase. We tested this mechanism using a dominant-negative human Xrn2 mutant and found that it delayed termination genome-wide. Xrn2 nuclease inactivation caused strong termination defects downstream of most poly(A) sites and modest delays at some histone and U snRNA genes suggesting that the torpedo mechanism is not limited to poly(A) site-dependent termination. A central untested feature of the torpedo model is that there is kinetic competition between the exonuclease and the pol II elongation complex. Using pol II rate mutants, we found that slow transcription robustly shifts termination upstream, and fast elongation extends the zone of termination further downstream. These results suggest that kinetic competition between elongating pol II and the Xrn2 exonuclease is integral to termination of transcription on most human genes.
Highlights d PNUTS-PP1 phosphatase is a global decelerator of Pol II transcription d PNUTS-PP1 promotes Spt5 dephosphorylation and Pol II braking at poly(A) sites d Termination requires poly(A)-dependent Spt5 dephosphorylation and Pol II braking d Allosteric switch converts Pol II to a ''sitting duck'' terminated by a Xrn2 torpedo
SUMMARY
The histone lysine demethylase KDM5B regulates gene transcription and cell differentiation. It contains three PHD fingers, the biological roles of which remain elusive. Here, we show that the first PHD1 finger of KDM5B binds unmodified histone H3, whereas the third PHD3 finger prefers the trimethylated mark, H3K4me3. RNA-seq analysis indicates that KDM5B functions as a transcriptional repressor for a set of genes. Biochemical analysis reveals that KDM5B associates with components of the nucleosome remodeling and deacetylase (NuRD) complex and may cooperate with HDAC1 in gene repression. Compared with the estrogen receptor positive breast cancers, KDM5B is downregulated in the triple-negative breast cancer. Overexpression of KDM5B in the MDA-MB 231 breast cancer cells suppresses cell migration and invasion ability, and the PHD1-H3K4me0 interaction is important for inhibition of migration. These findings highlight tumor-suppressive functions of KDM5B in triple-negative breast cancer cells and suggest a novel multivalent mechanism for KDM5B-mediated transcriptional regulation.
Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.