Macrolide-specific efflux pump MacAB-TolC has been identified in diverse Gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC ␣-barrel to investigate the role of the TolC ␣-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA ␣-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the ␣-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.Drug resistance of microbial pathogens presents an increasing threat to public health (1). In Gram-negative pathogens, high levels of intrinsic or acquired drug resistance are conferred by three-component multidrug efflux pumps, which are composed of the inner membrane transporter, the outer membrane factor (OMF), and the periplasmic membrane fusion protein (MFP) 4 (2-5). These tripartite complexes span the entire twomembrane envelope of Gram-negative bacteria and expel various molecules into the medium, utilizing a proton gradient or ATP hydrolysis. The inner membrane transporters belong to one of three structurally dissimilar superfamilies of proteins: resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), or major facilitator. The inner membrane transporters expel the substrates through the central channel of the OMF, as exemplified by Escherichia coli TolC, which spans the outer membrane (6). The MFP, which connects the other two components in the periplasm, is also essential for the function of the efflux pump.In E. coli, AcrAB-TolC acts as a major multidrug efflux pump (7-9), where AcrB is the RND-type inner membrane transporter and AcrA belongs to MFP. The homotrimeric TolC is embedded in the outer membrane and continues ϳ100 Å into the periplasmic space as an ␣-barrel composed of six ␣-hairpins that form the wall of a 35-Å inner-diameter cylindrical channel (10). The TolC channel is closed at the aperture end and the channel opening is induced only in the presence of the other components, the mechanism of which remains to be determined at the molecular level.The MacAB-TolC pump has been identified in E. coli; the inner membrane transporter MacB belongs to non-canonic ABC-type transporters (8,9,11,12), and MFP MacA shares structural similarity with AcrA (sequence similarity 44%) (13). Overproduction of MacAB results in increased resistance to the macrolide antibiotics in macrolide-susceptible AcrAB-deficient E. coli (8, 9, 11).The s...
Aminoacyl-tRNA synthetases (ARSs) acylate transfer (t)RNAs with amino acids. Charging tRNAs with the right amino acids is the first step in translation; therefore, the accurate and error-free functioning of ARSs is an essential prerequisite for translational fidelity. A recent study found that methionine (Met) can be incorporated into non-Met residues of proteins through methionylation of non-cognate tRNAs under conditions of oxidative stress. However, it was not understood how this mis-methionylation is achieved. Here, we report that methionyl-tRNA synthetase (MRS) is phosphorylated at Ser209 and Ser825 by extracellular signal-related kinase (ERK1/2) under conditions of stress caused by reactive oxygen species (ROS), and that this phosphorylated MRS shows increased affinity for non-cognate tRNAs with lower affinity for tRNAMet, leading to an increase in Met residues in cellular proteins. The expression of a mutant MRS containing the substitutions S209D and S825D, mimicking dual phosphorylation, reduced ROS levels and cell death. This controlled inaccuracy of MRS seems to serve as a defense mechanism against ROS-mediated damage at the cost of translational fidelity.
V-set and Ig domain-containing 4 (VSIG4, CRIg, or Z39Ig), a newly identified B7-related cosignaling molecule, is a complement receptor and a coinhibitory ligand that negatively regulates T-cell immunity. Despite its exclusive expression on liver Kupffer cells (KCs) that play key roles in liver tolerance, the physiological role of VSIG4 in liver tolerance remains undefined. Mice lacking VSIG4 had poor survival rates and severe liver pathology in a concanavalin A (ConA)-induced hepatitis (CIH) model, which could be prevented by adoptive transfer of VSIG4 1 KCs. The absence of VSIG4 rendered endogenous liver Tand natural killer T (NKT)-cells more responsive to antigen-specific stimulation and impaired tolerance induction in those cells against their cognate antigens. T-cell costimulation with VSIG4.Ig suppressed Th1-, Th2-, and Th17-type cytokine production and arrested the cell cycle at the G 0 /G 1 phase but did not induce apoptosis in vitro. VSIG4-mediated tolerance induction and cell-cycle arrest were further supported by down-regulation of G 1 phase-specific Cdk2, Cdk4, and Cdk6, and up-regulation of tolerance-inducing p27 KIP-1 in VSIG4.Ig-stimulated T-cells. Administration of soluble VSIG4.Ig to wildtype mice prevented CIH development and prolonged the survival of mice with established CIH. Conclusion: Collectively, our results suggest that VSIG4 1 KCs play a critical role in the induction and maintenance of liver T-and NKT-cell tolerance, and that modulation of the VSIG4 pathway using a VSIG4.Ig fusion protein may provide useful immunological therapies against immune-mediated liver injury including autoimmune hepatitis.
Despite remarkable progress in understanding and treating gastrointestinal stromal tumors (GISTs) during the past two decades, the pathological characteristics of GISTs have not been made clear yet. Furthermore, concrete diagnostic criteria of malignant GISTs are still uncertain. We collected pathology reports of 1,227 GISTs from 38 hospitals in Korea between 2003 and 2004 and evaluated the efficacy of the NIH and AFIP classification schemes as well as the prognostic factors among pathologic findings. The incidence of GISTs in Korea is about 1.6 to 2.2 patients per 100,000. Extra-gastrointestinal GISTs (10.1%) are more common in Korea than in Western countries. In univariate analysis, gender, age, tumor location, size, mitosis, tumor necrosis, vascular and mucosal invasions, histologic type, CD34 and s-100 protein expression, and classifications by the NIH and AFIP criteria were found to be significantly correlated with patient's survival. However, the primary tumor location, stage and classification of the AFIP criteria were prognostically significant in predicting patient's survival in multivariate analysis. The GIST classification based on original tumor location, size, and mitosis is more efficient than the NIH criteria in predicting patient's survival, but the mechanism still needs to be clarified through future studies.
ABBREVIATIONS: SSRIs, serotonin reuptake inhibitors; HO-1, heme oxygenase-1; HIF-1α, hypoxia-inducible factor-1α; BBB, blood-brain barrier; rCBF, regional cerebral blood flow; MABP, mean arterial blood pressure; LL, lower limit; HSP-32, heat-shock protein. Medicine, Korea This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine-and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1α (HIF-1α) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1α proteins expression, thereby providing a benefit in therapy of cerebral ischemia.
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels.
Our study is the first demonstration of IL-6- and EGF-stimulated proliferation of spinal cord progenitor cells via JAK2/STAT3 and MAPK signalling pathways. These pathways play key roles in repopulation and regeneration of spinal cord tissue after injury. It may represent novel therapeutic targets for pharmacological intervention in central nervous system disease, including spinal cord injury.
BackgroundPlatelet-activating factor (PAF) has been long believed to be associated with many pathophysiological processes during septic shock. Here we present novel activities for PAF in protecting mice against LPS-mediated endotoxic shock.Principal Findings In vivo PAF treatment immediately after LPS challenge markedly improved the survival rate against mortality from endotoxic shock. Administration of PAF prominently attenuated LPS-induced organ injury, including profound hypotension, excessive polymorphonuclear neutrophil infiltration, and severe multiple organ failure. In addition, PAF treatment protects against LPS-induced lymphocytes apoptosis. These protective effects of PAF was correlated with significantly decreases in the production of the inflammatory mediators such as TNF-α, IL-1β, IL-12, and IFN-γ, while increasing production of the anti-inflammatory cytokine IL-10 in vivo and in vitro.ConclusionsTaken together, these results suggest that PAF may protect mice against endotoxic shock via a complex mechanism involving modulation of inflammatory and anti-inflammatory mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.