The effect of bilastine on cardiac repolarization was studied in 30 healthy participants during a multiple-dose, triple-dummy, crossover, thorough QT study that included 5 arms: placebo, active control (400 mg moxifloxacin), bilastine at therapeutic and supratherapeutic doses (20 mg and 100 mg once daily, respectively), and bilastine 20 mg administered with ketoconazole 400 mg. Time-matched, triplicate electrocardiograms (ECGs) were recorded with 13 time points extracted predose and 16 extracted over 72 hours post day 4 dosing. Four QT/RR corrections were implemented: QTcB; QTcF; a linear individual correction (QTcNi), the primary correction; and a nonlinear one (QTcNnl). Moxifloxacin was associated with a significant increase in QTcNi at all time points between 1 and 12 hours, inclusively. Bilastine administration at 20 mg and 100 mg had no clinically significant impact on QTc (maximum increase in QTcNi, 5.02 ms; upper confidence limit [UCL] of the 1-sided, 95% confidence interval, 7.87 ms). Concomitant administration of ketoconazole and bilastine 20 mg induced a clinically relevant increase in QTc (maximum increase in QTcNi, 9.3 ms; UCL, 12.16 ms). This result was most likely related to the cardiac effect of ketoconazole because for all time points, bilastine plasma concentrations were lower than those observed following the supratherapeutic dose.
Hyperammonemia can lead to cerebral dysfunction, encephalopathy, coma, and death if not treated adequately. The poor prognosis associated with this condition reflects the unmet medical need for effective ammonia-lowering treatments. Here, the translational potential of liposome-supported peritoneal dialysis (LSPD), a recently-developed detoxification strategy for the removal of small ionizable molecules like ammonia, is described. Dialysis fluids supplemented with micrometer-sized, transmembrane pH-gradient liposomes are prepared via an innovative, osmotic shock-based method overcoming sterilization and long-term stability issues. LSPD is able to sequester ammonia in healthy rats in relation to the injected dose, buffering capacity of the liposomal core, and membrane composition. In a rat model of cirrhosis, LSPD outperforms conventional peritoneal dialysis in lowering plasmatic ammonia levels and attenuating brain edema. LSPD does not trigger any hypersensitive reaction in pigs, a side effect commonly observed upon the injection of colloids in this animal model and in humans. These findings support the development of LSPD for the treatment of hyperammonemia-induced encephalopathy.
Our study re-emphasizes the importance of a sampling site when performing PK-PD modelling for drugs undergoing elimination from the effect compartment. For a drug undergoing tissue elimination such as remifentanil, venous rather than arterial concentrations will reflect more exactly the effect compartment concentrations, under steady-state conditions.
This study compares the ability of 2 semiautomated methods with a fully automated method for QT measurement to minimize the sample size required to detect a moxifloxacin effect and exclude a placebo effect in a thorough QT/QTc study. The fully automated and 1 of 2 semiautomated methods used a global QT measurement in 12 leads, whereas the other semiautomated method used a tangent method on single lead raw complexes. Mean QTcF intervals were greater when measured on a global QT electrocardiogram than on raw complexes, but the mean magnitudes of DeltaQTcF were similar for all methods. The 3 methods detected a statistically significant increase in QTcF for moxifloxacin compared to placebo and were able to exclude a placebo effect on QTcF in all 62 participants. However, due to a smaller variability, the semiautomated methods allowed these detections with fewer than 20 participants, whereas the fully automated required at least 27 participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.