In this paper, we consider a test for the mean vector of independent and identically distributed multivariate normal random vectors where the dimension p is larger than or equal to the number of observations N. This test is invariant under scalar transformations of each component of the random vector. Theories and simulation results show that the proposed test is superior to other two tests available in the literature. Interest in such significance test for high-dimensional data is motivated by DNA microarrays. However, the methodology is valid for any application which involves high-dimensional data.
The essential task of risk investment is to select an optimal tracking portfolio among various portfolios. Statistically, this process can be achieved by choosing an optimal restricted linear model. This paper develops a statistical procedure to do this, based on selecting appropriate weights for averaging approximately restricted models. The method of weighted average least squares is adopted to estimate the approximately restricted models under dependent error setting. The optimal weights are selected by minimizing ak-class generalized information criterion (k-GIC), which is an estimate of the average squared error from the model average fit. This model selection procedure is shown to be asymptotically optimal in the sense of obtaining the lowest possible average squared error. Monte Carlo simulations illustrate that the suggested method has comparable efficiency to some alternative model selection techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.