The time-varying frequency structure of musical signals have been analyzed using wavelets by either extracting the instantaneous frequency of signals or building features from the energies of sub-band coefficients. We propose to benefit from a combination of these two approaches and use the time-frequency domain energy localization curves, called as wavelet ridges, in order to build features for classification of musical instrument sounds. We evaluated the representative capability of our feature in different musical instrument classification problems using support vector machine classifiers. The comparison with the features based on parameterizing the wavelet sub-band energies confirmed the effectiveness of the proposed feature.
Detection of smoke from videos captured by surveillance cameras in outdoor environments is one of the useful outcome of Internet of Things (IoT) applications. The potential benefit increases when deep learning (DL) architectures are involved. However, an inherent difficulty is to detect smoke while natural events like fog exists. The effectiveness of color spaces in detection performance has not yet fully evaluated in those architectures. Moreover, the energy and memory requirements of DL architectures may not be applicable for handling IoT implementation demands. Therefore, in this work, a DL architecture with a suitable color space model, applicable for IoT implementations is proposed to detect smoke from videos in foggy environment. By collecting several videos including smoke samples, the performance comparison of popular and the state-of-the-art DL architectures denoted the outperforming result according to both accuracy and memory usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.