Rammed earth (RE) construction is an ancestral technique that allows for the building of durable and resistant constructions. RE buildings are sustainable and environment-friendly, and ensure energy optimization during the construction cycle. For these reasons, many of the following RE characteristics are studied: mechanical strength, seismic resistance, and thermal performance. However, the mix design of RE soils has been rarely studied. There is practically no scientific approach that allows for defining precise dosages of clay, silt, sand, and gravel used in RE materials. The broader aim of this article is to determine a scientific mix design method to find an optimal RE granular mixture. The compressible packing model (CPM) is applied to study the effect of every granular class on compactness and define the optimum mixture. Many tests have been conducted such as the Modified Proctor, compression test, and ultrasonic velocity pulse test to evaluate the relevance of this model. The results suggest many granular corrections for RE material that considerably enhance compactness and unconfined compressive strength (UCS). It was found that one granular correction provides a 137% increase in the initial UCS. Therefore, this approach enables the defining of which granular class is to be added or reduced to optimize the mechanical properties of RE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.