The Janzen–Connell hypothesis proposes that specialist natural enemies, such as herbivores and pathogens, maintain diversity in plant communities by reducing survival rates of conspecific seeds and seedlings located close to reproductive adults or in areas of high conspecific density. Variation in the strength of distance- and density-dependent effects is hypothesized to explain variation in plant species richness along climatic gradients, with effects predicted to be stronger in the tropics than the temperate zone and in wetter habitats compared to drier habitats.We conducted a comprehensive literature search to identify peer-reviewed experimental studies published in the 40+ years since the hypothesis was first proposed. Using data from these studies, we conducted a meta-analysis to assess the current weight of evidence for the distance and density predictions of the Janzen–Connell hypothesis.Overall, we found significant support for both the distance- and density-dependent predictions. For all studies combined, survival rates were significantly reduced near conspecifics compared to far from conspecifics, and in areas with high densities of conspecifics compared to areas with low conspecific densities. There was no indication that these results were due to publication bias.The strength of distance and density effects varied widely among studies. Contrary to expectations, this variation was unrelated to latitude, and there was no significant effect of study region. However, we did find a trend for stronger distance and density dependence in wetter sites compared to sites with lower annual precipitation. In addition, effects were significantly stronger at the seedling stage compared to the seed stage.Synthesis. Our study provides support for the idea that distance- and density-dependent mortality occurs in plant communities world-wide. Available evidence suggests that natural enemies are frequently the cause of such patterns, consistent with the Janzen–Connell hypothesis, but additional studies are needed to rule out other mechanisms (e.g. intraspecific competition). With the widespread existence of density and distance dependence clearly established, future research should focus on assessing the degree to which these effects permit species coexistence and contribute to the maintenance of diversity in plant communities.
1. Forest ecosystems are critical for the global regulation of carbon (C), a substantial portion of which is stored in above-ground biomass (AGB). While it is well understood that taxonomic and functional composition, stand structure and environmental gradients influence spatial variation in AGB, the relative strengths of these drivers at landscape scales have not been investigated in temperate forests. Furthermore, when biodiversity enhances C storage, it is unclear whether it is through mass-ratio effects (i.e. the dominant trait in communities regulates AGB) or through niche complementarity (i.e. increased AGB due to interspecific resource partitioning).2. To address these mechanisms, we analysed data from a census of 28,262 adult trees sampled across 900 ha of temperate deciduous forest in southwestern Pennsylvania. We used data on four key plant functional traits to determine if (1) there is a positive relationship between species diversity and AGB and (2) whether this is due to mass-ratio effects or niche complementarity. We also sought to (3) identify the physical stand structural attributes and topographic variables that influence AGB across this landscape.3. We found AGB was positively related to species richness and negatively related to species evenness, albeit weakly, while functional diversity indices had neutral effects. Above-ground biomass was enhanced in communities dominated by traits related to greater maximum tree height, deeper minimum rooting depths and larger seeds. Most importantly, areas with high AGB were dominated by Acer saccharum and Liriodendron tulipifera. Overall, these results support mass-ratio effects, with little evidence for niche complementarity. Synthesis.Stand structure, topography, and species and functional composition, but not taxonomic or functional diversity, were found to be key drivers of aboveground biomass at landscape scales (<900 ha) in this temperate deciduous forest.Our findings suggest that simultaneously managing for both high diversity andfor above-ground carbon storage may prove challenging in some forest systems.Our results further indicate that the impact of tree biodiversity loss on aboveground carbon stocks will depend greatly on the identity of the species that are lost. | Journal of EcologyFOTIS eT al. SUPPORTING INFORMATIONAdditional Supporting Information may be found online in the supporting information tab for this article.How to cite this article: Fotis AT, Murphy SJ, Ricart RD, et al.Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest.
Connectivity plays a crucial role in determining the spread, viability, and persistence of populations across space. Dispersal across landscapes, or the movement of individuals or genes among resource patches, is critical for functional connectivity. Yet current connectivity modelling typically uses information on species location or habitat preference rather than movement, which unfortunately may not capture key dispersal limitations. We argue that recent developments in species distribution modelling provide insightful lessons for addressing this gap and advancing our understanding of connectivity. We suggest shifting the focus of connectivity modelling from locating where animals potentially disperse to a process‐based approach directed towards understanding and mapping factors that limit successful dispersal. To do so, we propose defining species dispersal requirements through identifying spatial, environmental and intrinsic constraints to successful dispersal, analogous to identifying environmental dimensions that define niches. We discuss the benefits of this constraint‐based framework for understanding the distribution of species, predicting species responses to climate change, and connectivity conservation practice. We illustrate how the framework can aid in identifying potential detrimental effects of human activities on connectivity and species persistence, and can spur the implementation of innovative conservation strategies. The proposed framework clarifies the validity and contextual utility of objectives and measures in existing connectivity models, and identifies gaps that may impede our understanding of connectivity and its integration into successful conservation strategies. We expect that this framework will facilitate a mechanistic approach to understanding and conserving connectivity, which will aid in effectively predicting and mitigating effects of ongoing environmental change.
In fragmented forests, tree diversity declines near edges but the ecological processes underlying this loss of diversity remain poorly understood. Theory predicts that top-down regulation of seedling recruitment by insect herbivores and fungal pathogens contributes to maintaining tree diversity in forests, but it is unknown whether proximity to forest edges compromises these diversity-enhancing biotic interactions. Here we experimentally demonstrate that weakened activity of fungal pathogens and insect herbivores reduced seedling diversity, despite similar diversity of seed rain, during recruitment near forest edges in a human-modified tropical landscape. Only at sites farthest from forest edges (90–100 m) did the application of pesticides lower seedling diversity relative to control plots. Notably, lower seedling diversity corresponded with weaker density-dependent mortality attributable to insects and fungi during the seed-to-seedling transition. We provide mechanistic evidence that edge-effects can manifest as cryptic losses of crucial biotic interactions that maintain diversity.
Aim How seasonal drought influences tree species distributions might shape future vegetation composition with impending changes to rainfall patterns. Theory suggests that across a seasonal drought gradient, dry‐tolerant species might have wider distributions than species sensitive to seasonal drought, which will be restricted to less seasonal conditions. As wet‐associated species drop out with increasing seasonality, the community will contain mainly dry‐tolerant species. Time period Present. Location Western Ghats Biodiversity Hotspot in peninsular India. Major taxa studied Woody angiosperms. Methods Across a 1,200 km seasonal drought gradient, we modelled occurrences of 183 species using Gaussian logistic regression in a hierarchical Bayesian framework. We used the first‐order model coefficients to attribute the association of species to seasonality (dry/wet) and second‐order coefficients to assess modal responses. For 92 species, we checked for an interaction between dry/wet association and two traits: wood density and specific leaf area (SLA). Finally, we assessed the consequences of the seasonality associations of species for regional community assembly. Results Of 183 species, 38% were significantly wet associated, 27% dry associated and 34% indifferent to seasonality. Nearly 80% of species had estimated modes of occurrence within the seasonality range considered here. Species with lower SLA and lower wood density were more likely to occur in more seasonal sites where dry‐associated species formed the majority of co‐occurring species. The proportion of wet‐associated species increased only after intermediate levels of seasonality. The community proportion of extreme wet‐associated species decreased prominently from less to more seasonal sites. Main conclusions Dry‐associated species persisted in less seasonal sites, but not vice versa. A shift toward more seasonal rainfall might favour dry‐associated species and shrink the ranges of wet‐associated species. Future work should assess how the intensity and duration of drought and interactions with other drivers of global change regulate the relative performance of species at more and less seasonal sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.