Feature clustering is a powerful method to reduce the dimensionality of feature vectors for text classification. In this paper, Fast Fuzzy Feature clustering for text classification is proposed. It is based on the framework proposed by Jung-Yi Jiang, Ren-Jia Liou and Shie-Jue Lee in 2011. The word in the feature vector of the document is grouped into the cluster in less iteration. The numbers of iterations required to obtain cluster centers are reduced by transforming clusters center dimension from n-dimension to 2-dimension. Principle Component Analysis with slit change is used for dimension reduction. Experimental results show that, this method improve the performance by significantly reducing the number of iterations required to obtain the cluster center. The same is being verified with three benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.