Identifying requirements for an information system is an important task and conceptual modelling is the first step in this process. Conceptual modelling plays a critical role in the information system design process and usually involves domain experts and knowledge engineers who brainstorm together to identify the required knowledge to build an information system. The conceptual modelling process starts with the collection of necessary information from the domain experts by the knowledge engineers. Afterwards, the knowledge engineers use traditional model driven engineering techniques to design the system based on the collected information. Natural language based conceptual modelling frameworks or systems are used to help domain experts and knowledge engineers in eliciting requirements and building conceptual models from a natural language text. In this paper, we discuss the state of the art of some recent conceptual modelling frameworks that are based on natural language. We take a closer look at how these frameworks are built, in particular at the underlying motivation, architecture, types of natural language used (e.g., restricted vs unrestricted), types of the conceptual model generated, verification support of the requirements specifications as well as the conceptual models, and underlying knowledge representation formalism. We also discuss some future research opportunities that these frameworks offer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.