Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by null mutations in the dystrophin gene. Although the primary defect is the deficiency of muscle dystrophin, secondary events, including chronic inflammation, fibrosis, and muscle regeneration failure are thought to actively contribute to disease progression. Despite several advances, there is still no effective therapy for DMD. Therefore, the potential regenerative capacities, and immune-privileged properties of mesenchymal stromal cells (MSCs), have been the focus of intense investigation in different animal models aiming the treatment of these disorders. However, these studies have shown different outcomes according to the sources from which MSCs were obtained, which raise the question whether stem cells from distinct sources have comparable clinical effects. Here, we analyzed the protein content of the secretome of MSCs, isolated from three different sources (adipose tissue, skeletal muscle, and uterine tubes), obtained from five donors and evaluated their in vitro properties when cocultured with DMD myoblasts. All MSC lineages showed pathways enrichment related to protein metabolic process, oxidation-reduction process, cell proliferation, and regulation of apoptosis. We found that MSCs secretome proteins and their effect in vitro vary significantly according to the tissue and donors, including opposite effects in apoptosis assay, indicating the importance of characterizing MSC secretome profile before its use in animal and clinical trials. Despite the individual differences a pool of conditioned media from all MSCs lineages was able to delay apoptosis and enhance migration when in contact with DMD myoblasts.
Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.
The combination of cell therapy with growth factors could be a useful approach to treat progressive muscular dystrophies. Here, we demonstrate, for the first time, that IGF-1 considerably enhances the myogenesis of human umbilical cord (UC) mesenchymal stromal cells (MSCs) in vitro and that IGF-1 enhances interaction and restoration of dystrophin expression in co-cultures of MSCs and muscle cells from Duchenne patients. In vivo studies showed that human MSCs were able to reach the skeletal muscle of LAMA2(dy/2j) dystrophic mice, through systemic delivery, without immunosuppression. Moreover, we showed, for the first time, that IGF-1 injected systemically together with MSCs markedly reduced muscle inflammation and fibrosis, and significantly improved muscle strength in dystrophic mice. Our results suggest that a combined treatment with IGF-1 and MSCs enhances efficiency of muscle repair and, therefore, should be further considered as a potential therapeutic approach in muscular dystrophies.
Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs) is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL) therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs) cell therapy associated with a 30mW/3J—660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day) and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC), which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD.
The possibility to treat Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, through cell therapy with mesenchymal stromal cells (MSCs) has been widely investigated in different animal models. However, some crucial questions need to be addressed before starting human therapeutic trials, particularly regarding its use for genetic disorders. How safe is the procedure? Are there any side effects following mesenchymal stem cell transplantation? To address these questions for DMD the best model is the golden retriever muscular dystrophy dog (GRMD), which is the closest model to the human condition displaying a much longer lifespan than other models. Here we report the follow-up of 5 GRMD dogs, which were repeatedly transplanted with human adipose-derived mesenchymal stromal cells (hASC), derived from different donors. Xenogeneic cell transplantation, which was done without immunosuppression, was well tolerated in all animals with no apparent long-term adverse effect. In the present study, we show that repeated heterologous stem-cell injection is a safe procedure, which is fundamental before starting human clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.