Many secondary deciduous forests of eastern North America are approaching a transition in which mature early‐successional trees are declining, resulting in an uncertain future for this century‐long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling‐induced mortality of >6,700 early‐successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower‐based C cycling observations from the 33‐ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid‐late‐successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1‐yr recovery of total leaf area index as mid‐late‐successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid‐late‐successional species dominance improved carbon‐use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid‐late‐successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.
Carbon (C) cycling processes are particularly dynamic following disturbance, with initial responses often indicative of longer-term change. In northern Michigan, USA, we initiated the Forest Resilience Threshold Experiment (FoRTE) to identify the processes that sustain or lead to the decline of C cycling rates across multiple levels (0, 45, 65 and 85% targeted gross leaf area index loss) of disturbance severity and, in response, to separate disturbance types preferentially targeting large or small diameter trees. Simulating the effects of boring insects, we stem girdled > 3600 trees below diameter at breast height (DBH), immediately and permanently disrupting the phloem. Weekly DBH measurements of girdled and otherwise healthy trees (n > 700) revealed small but significant increases in daily aboveground wood net primary production (ANPPw) in the 65 and 85% disturbance severity treatments that emerged six weeks after girdling. However, we observed minimal change in end-of-season leaf area index and no significant differences in annual ANPPw among disturbance severities or between disturbance types, suggesting continued C fixation by girdled trees sustained stand-scale wood production in the first growing season after disturbance. We hypothesized higher disturbance severities would favor the growth of early successional species but observed no significant difference between early and middle to late successional species’ contributions to ANPPw across the disturbance severity gradient. We conclude that ANPPw stability immediately following phloem disruption is dependent on the continued, but inevitably temporary, growth of phloem-disrupted trees. Our findings provide insight into the tree-to-ecosystem mechanisms supporting stand-scale wood production stability in the first growing season following a phloem-disrupting disturbance.
Abstract. The fortedata R package is an open data notebook from the Forest Resilience Threshold Experiment (FoRTE) – a modeling and manipulative field experiment that tests the effects of disturbance severity and disturbance type on carbon cycling dynamics in a temperate forest. Package data consist of measurements of carbon pools and fluxes and ancillary measurements to help analyze and interpret carbon cycling over time. Currently the package includes data and metadata from the first three FoRTE field seasons, serves as a central, updatable resource for the FoRTE project team, and is intended as a resource for external users over the course of the experiment and in perpetuity. Further, it supports all associated FoRTE publications, analyses, and modeling efforts. This increases efficiency, consistency, compatibility, and productivity while minimizing duplicated effort and error propagation that can arise as a function of a large, distributed and collaborative effort. More broadly, fortedata represents an innovative, collaborative way of approaching science that unites and expedites the delivery of complementary datasets to the broader scientific community, increasing transparency and reproducibility of taxpayer-funded science. The fortedata package is available via GitHub: https://github.com/FoRTExperiment/fortedata (last access: 19 February 2021), and detailed documentation on the access, used, and applications of fortedata are available at https://fortexperiment.github.io/fortedata/ (last access: 19 February 2021). The first public release, version 1.0.1 is also archived at https://doi.org/10.5281/zenodo.4399601 (Atkins et al., 2020b). All data products are also available outside of the package as .csv files: https://doi.org/10.6084/m9.figshare.13499148.v1 (Atkins et al., 2020c).
Abstract. The fortedata R package is an open data notebook from the Forest Resilience Threshold Experiment (FoRTE) – a modeling and manipulative field experiment that tests the effects of disturbance severity and disturbance type on carbon cycling dynamics in a temperate forest. Package data consists of measurements of carbon pools and fluxes and ancillary measurements to help users analyse and interpret carbon cycling over time. Currently the package includes data and metadata from the first two years of FoRTE, and serves as a central, updatable resource for the FoRTE project team and is intended as a resource for external users over the course of the experiment and in perpetuity. Further, it supports all associated FoRTE publications, analyses, and modeling efforts. This increases efficiency, consistency, compatibility, and productivity, while minimizing duplicated effort and error propagation that can arise as a function of a large, distributed and collaborative effort. More broadly, fortedata represents an innovative, collaborative way of approaching science that unites and expedites the delivery of complementary datasets in near real time to the broader scientific community, increasing transparency and reproducibility of taxpayer-funded science. fortedata is available via GitHub: https://github.com/FoRTExperiment/fortedata and detailed documentation on the access, used, and applications of fortedata are available at: https://fortexperiment.github.io/fortedata/. The first public release, version 1.0.1 is also archived at: https://doi.org/10.5281/zenodo.3936146 (Atkins et al., 2020b). All level one data products are also available outside of the package as .csv files: https://doi.org/10.6084/m9.figshare.12292490.v3 (Atkins et al. 2020c).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.