This paper investigates the mechanisms of convective cloud organization by precipitationdriven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment/Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent, and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured with buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convection than do isolated ones. This is due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that form along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, increasing the probability that the clouds further develop into deep convection. Implications for the design of future convective parameterization with cold poolmodulated entrainment rates are discussed.
Influences of the diurnal cycle on the propagation of the Madden‐Julian Oscillation (MJO) convection across the Maritime Continent (MC) are examined using cloud‐permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no‐diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO convection signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that the surface downwelling shortwave radiation is larger in the presence of the diurnal cycle (CONTROL simulations) primarily because clouds preferentially form in the afternoon and are smaller during day time in comparison to nighttime. Furthermore, the diurnal covariability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in the CONTROL runs compared to NODC runs. An analysis of observations indicates that ahead of and behind the MJO active phase, the diurnal cycle of cloudiness enhances downwelling shortwave radiation and hence convection over the MC islands. This enhanced stationary convection competes with and disrupts the convective signal of MJO events that propagate over the waters surrounding the islands.
Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information and increased accuracy by resolving processes that cannot be adequately represented by a coarser grid. This study uses the Model for Prediction Across ScalesAtmosphere (MPAS-A), consisting of a nonhydrostatic dynamical core and a subset of Weather Research and Forecasting (WRF) model physics, to investigate the potential benefits of using tropical channel refinement. The simulations are performed with an idealized aquaplanet configuration using 30 and 240 km global grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (208S-208N) and one with a wide (308S-308N) tropical channel refinement. Increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the 30 km global grid, both refined channel simulations exhibit slightly stronger updrafts inside the Hadley cell resulting in more resolved precipitation. Using a wider tropical refinement leads to a closer correspondence with the global high-resolution grid. While different grid spacings produce similar cloud size distributions that are consistent with observations, the dependence of precipitation rate on cloud size varies among simulations. The refined channel simulations show improved tropical and extratropical precipitation relative to the global coarse simulation. All simulations show a single precipitation peak centered on the equator. Although the results show that tropical refinement is an effective method for avoiding artifacts due to grid resolution sensitivities seen in earlier studies that only refined a portion of the tropics, some biases remain well inside of the refinement region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.