BackgroundBacteraemia is a frequent and severe condition with a high mortality rate. Despite profound knowledge about the pre-test probability of bacteraemia, blood culture analysis often results in low rates of pathogen detection and therefore increasing diagnostic costs. To improve the cost-effectiveness of blood culture sampling, we computed a risk prediction model based on highly standardizable variables, with the ultimate goal to identify via an automated decision support tool patients with very low risk for bacteraemia.MethodsIn this retrospective hospital-wide cohort study evaluating 15,985 patients with suspected bacteraemia, 51 variables were assessed for their diagnostic potency. A derivation cohort (n = 14.699) was used for feature and model selection as well as for cut-off specification. Models were established using the A2DE classifier, a supervised Bayesian classifier. Two internally validated models were further evaluated by a validation cohort (n = 1,286).ResultsThe proportion of neutrophile leukocytes in differential blood count was the best individual variable to predict bacteraemia (ROC-AUC: 0.694). Applying the A2DE classifier, two models, model 1 (20 variables) and model 2 (10 variables) were established with an area under the receiver operating characteristic curve (ROC-AUC) of 0.767 and 0.759, respectively. In the validation cohort, ROC-AUCs of 0.800 and 0.786 were achieved. Using predefined cut-off points, 16% and 12% of patients were allocated to the low risk group with a negative predictive value of more than 98.8%.ConclusionApplying the proposed models, more than ten percent of patients with suspected blood stream infection were identified having minimal risk for bacteraemia. Based on these data the application of this model as an automated decision support tool for physicians is conceivable leading to a potential increase in the cost-effectiveness of blood culture sampling. External prospective validation of the model's generalizability is needed for further appreciation of the usefulness of this tool.
Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.