The influence of viscosity on droplet-droplet collision behavior at ambient conditions was studied experimentally and numerically. N-decane, monoethyleneglycol (MEG), diethyleneglycol (DEG), and triethyleneglycol were used as liquid phase providing viscosities in the range from 0.9to48mPas. Collision Weber numbers ranged approximately from 10 to 420. A direct numerical simulation code, based on the volume-of-fluid concept, was used for the simulations. Experimentally, observations of two droplet streams using a modified stroboscopic technique (aliasing method) were used to investigate the whole range of impact parameters during one experimental run. The experimental method has previously been verified for the water/air system [C. Gotaas et al., Phys. Fluids 19, 102105 (2007)]. In the present work, it was tested and validated for the n-decane/air system. Measured data agree well with those published in the literature. Well-defined regions of stretching separation and coalescence were identified, while reflexive separation regions were not found by using a single sinusoidal disturbance. However, the onset of reflexive separation was identified for MEG and DEG using an amplitude modulation technique. The results show that the criteria for onset of reflexive separation for viscous fluids provided by Y. I. Jiang et al. [J. Fluid Mech. 234, 177 (1992)] are not valid. This is consistent with the results given by K. D. Willis and M. Orme [Exp. Fluids 34, 28 (2003)]. A new empirical correlation for the onset of reflexive separation for high viscosity fluids is presented. The borders between coalescing and stretching separation were shifted toward higher Weber numbers with increasing viscosity. The lack of occurrence of reflexive separation for the single sinusoidal disturbance (small droplets), as well as the stretching separation boundary shift, can be explained by dissipation of collision kinetic energy in viscous flows inside the merged droplet after collision. Results from numerical simulations for MEG, DEG, and TEG correlated well with experimental data for the same fluids.
In this contribution, an overview of the progress in the design of an enhanced FLOX® burner is given. A fuel flexible burner concept was developed to fulfill the requirements of modern gas turbines: high specific power density, high turbine inlet temperature, and low NOx emissions. The basis for the research work is numerical simulation. With the focus on pollutant emissions, a detailed chemical kinetic mechanism is used in the calculations. A novel mixing control concept, called HiPerMix®, and its application in the FLOX® burner are presented. In view of the desired operational conditions in a gas turbine combustor, this enhanced FLOX® burner was manufactured and experimentally investigated at the DLR test facility. In the present work, experimental and computational results are presented for natural gas and natural gas+hydrogen combustion at gas turbine relevant conditions and high adiabatic flame temperatures (up to Tad=2000 K). The respective power densities are PA=13.3 MW/m2 bar (natural gas (NG)) and PA=14.8 MW/m2 bar(NG+H2), satisfying the demands of a gas turbine combustor. It is demonstrated that the combustion is complete and stable and that the pollutant emissions are very low.
A numerical study of heat transfer enhancement due to the deformation of droplets at high Reynolds numbers is described. The two phase‐flow has been computed with a 3D DNS program using the volume‐of‐fluid method. The droplets are deformed because of the surrounding gas stream especially due to a sudden rise of flow velocity from zero to Ui. As the governing non‐dimensional parameter the Weber number of the droplets has been varied between 1.3 and 10.8 by assuming different surface tensions at Reynolds numbers between 360 and 853. The dynamical behavior of the droplets as a function of the Weber and the Ohnsorge number are in good agreement with experimental results from the literature. At the highest Reynolds number Re=853, a significant dependency of Nu on We has been found. The comparison of a Nusselt number computed with the real surface area with a Nusselt number computed with the spherical surface area shows that the heat transfer increases not only due to the droplet motion but also due to the larger surface area of the deformed droplet.
In this contribution, an overview of the progress in the design of an enhanced FLOX® burner is given. A fuel flexible burner concept was developed to fulfill the requirements of modern gas turbines: high specific power density, high turbine inlet temperature, and low NOx emissions. The basis for the research work is numerical simulation. With the focus on pollutant emissions a detailed chemical kinetic mechanism is used in the calculations. A novel mixing control concept, called HiPerMix®, and its application in the FLOX® burner is presented. In view of the desired operational conditions in a gas turbine combustor this enhanced FLOX® burner was manufactured and experimentally investigated at the DLR test facility. In the present work experimental and computational results are presented for natural gas and natural gas + hydrogen combustion at gas turbine relevant conditions and high adiabatic flame temperatures (up to Tad = 2000 K). The respective power densities are PA = 13.3 MW/m2/bar (NG) and PA = 14.8 MW/m2/bar (NG + H2) satisfying the demands of a gas turbine combustor. It is demonstrated that the combustion is complete and stable and that the pollutant emissions are very low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.