The DLR Earth Sensing Imaging Spectrometer (DESIS) is a new space-based hyperspectral instrument developed by DLR and operated under collaboration between the German Aerospace Center (DLR) and Teledyne Brown Engineering (TBE). DESIS will be mounted on the International Space Station on the MUSES platform in 2018 and will provide hyperspectral Earth Observation in the wavelength range from visible to near-infrared with high resolution and near global coverage. TBE provides the platform and infrastructure on the ISS. DLR developed the instrument, while the optical system was fabricated and pre-aligned by the Fraunhofer Institut für Angewandte Optik und Feinmechanik (IOF). This paper presents the on-ground adjustment, focusing and calibration approach for DESIS done at the optical lab of the Institut für Optische Sensorsysteme (DLR). The optical lab set-up will be described in detail. Selected calibration results like detector Modulation Transfer Function (MTF) and linearity, optics MTF and wave front, focus position, smile and keystone measurement, instrument spatial and spectral MTF, and absolute radiometric calibration will be presented. The spectral and radiometric in-flight calibration approach of the DESIS calibration unit (CAL) based on stabilized Light Emitting Diode (LED) arrays will be demonstrated. In addition, the innovative pointing unit (POI) in front of the instrument and its pointing accuracy will be introduced. Finally imaging quality and accuracy of the sensor calibration will be evaluated with respect to foreseen applications.
ABSTRACT:The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR) in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS) on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs), one for the UV-VIS spectral range (305 nm … 500 nm), the second for NIR (750 nm … 775 nm). In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM) which will also be used for the upcoming Flight Model (FM) verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.