Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted genomic sequence on the DJ-1 gene in embryos that had been injected with the single guide RNA (sgRNA) transcribed by a T7 promoter and capped RNA encoding a Cas9 nuclease. The sgRNAs that were designed for the target genomic sequences without the 5′ end of GG required by the T7 promoter induced the targeted mutations. This suggests that the RGEN can target any sequence adjacent to an NGG protospacer adjacent motif (PAM) sequence, which occurs once every 8 bp. The off-target alterations at 2 genomic loci harboring double mismatches in the 18-bp targeting sequences were induced in the RGEN-injected embryos. However, we also found that the off-target effects could be reduced by lower dosages of sgRNA. Taken together, our results suggest that CRISPR/Cas-mediated RGENs may be an efficient and flexible tool for genome editing in medaka.
The see-through medaka is a vertebrate model with a transparent body in the adult stage, as well as during the embryonic stages, that was generated from a small laboratory fish, medaka (Oryzias latipes). In this fish model, most of the pigments are genetically removed from the entire body by a combination of recessive alleles at four loci. The main internal organs, namely, heart, spleen, blood vessels, liver, gut, gonads, kidney, brain, spinal cord, lens, air bladder, and gills, in living adult fish are visible to the naked eye or with a simple stereoscopic microscope. This fish is healthy and fertile. A transgenic see-through medaka was produced by using the green fluorescent protein (GFP) gene fused to the regulatory regions of the medaka vasa gene, in which germ cell-specific expression of GFP was visualized. The fluorescent tag also efficiently improved visibility of gonadal tissues. The process of oocyte maturation in the ovary was monitored by repeated observations from the outside of the body during one spawning cycle in the same living females of the transgenic see-through stock. The see-through medaka will provide an opportunity for noninvasive studies of morphological and molecular events that occur in internal organs in the later stages of life.
Animal body color is generated primarily by neural crest-derived pigment cells in the skin. Mammals and birds have only melanocytes on the surface of their bodies; however, fish have a variety of pigment cell types or chromatophores, including melanophores, xanthophores, and iridophores. The medaka has a unique chromatophore type called the leucophore. The genetic basis of chromatophore diversity remains poorly understood. Here, we report that three loci in medaka, namely, leucophore free (lf), lf-2, and white leucophore (wl), which affect leucophore and xanthophore differentiation, encode solute carrier family 2, member 15b (slc2a15b), paired box gene 7a (pax7a), and solute carrier family 2 facilitated glucose transporter, member 11b (slc2a11b), respectively. Because lf-2, a loss-of-function mutant for pax7a, causes defects in the formation of xanthophore and leucophore precursor cells, pax7a is critical for the development of the chromatophores. This genetic evidence implies that leucophores are similar to xanthophores, although it was previously thought that leucophores were related to iridophores, as these chromatophores have purine-dependent light reflection. Our identification of slc2a15b and slc2a11b as genes critical for the differentiation of leucophores and xanthophores in medaka led to a further finding that the existence of these two genes in the genome coincides with the presence of xanthophores in nonmammalian vertebrates: birds have yellow-pigmented irises with xanthophore-like intracellular organelles. Our findings provide clues for revealing diverse evolutionary mechanisms of pigment cell formation in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.