The properties of an interacting electron system depend on the electron correlations and the effective dimensionality. For example, Coulomb repulsion between electrons may inhibit, or completely block, conduction by intersite electron hopping, thereby determining whether a material is a metal or an insulator. Furthermore, correlation effects increase as the number of effective dimensions decreases; in three-dimensional systems, the low-energy electronic states behave as quasiparticles, whereas in one-dimensional systems, even weak interactions break the quasiparticles into collective excitations. Dimensionality is particularly important for exotic low-dimensional materials where one- or two-dimensional building blocks are loosely connected into a three-dimensional whole. Here we examine two such layered metallic systems with angle-resolved photoemission spectroscopy and electronic transport measurements, and we find a crossover in the number of effective dimensions from two to three with decreasing temperature. This is apparent from the observation that, in the direction perpendicular to the layers, the materials have an insulating character at high temperatures but become metal-like at low temperatures, whereas transport within the layers remains metallic over the whole temperature range. We propose that this change in effective dimensionality correlates with the presence of coherent quasiparticles within the layers.
With a strong help of high-resolution photoemission spectroscopy we demonstrate in this paper that the large thermoelectric power observed in the layered cobalt oxides, such as Ca 3 Co 4 O 9 , Na 0.6 CoO 2 , and Bi 2 Sr 2 Co 2 O 9 , can be well accounted for with the Boltzmann-type metallic electrical conduction. An intense peak with 1.5-2 eV in width was observed in the photoemission spectra with its center at 1.0 eV below the Fermi level E F in these compounds. The density of states at E F is finite but negligibly small at room temperature, because E F is located near the high-energy edge of this narrow band. We calculated thermoelectric power S using the Boltzmann transport equation with the electronic structure near E F determined by the photoemission measurement. The calculated S shows fairly good consistency with the measured value both in its magnitude and the temperature dependence.
Effects of yttrium doping on the thermoelectric properties of Hf 0.6 Zr 0.4 NiSn 0.98 Sb 0.02 half-Heusler alloys A Heusler Fe 2 V 1-x W x Al sintered alloy was synthesized to evaluate the effect of W substitution on thermoelectric properties of the Heusler alloy. The Seebeck coefficient and the electrical conductivity are simultaneously enhanced through electron injection resulting from the W substitution. Comparison with the Si-substituted Fe 2 VAl alloy reveals that the additional electronic states derived from W 5d orbital in the vicinity of pseudogap are likely to degrade the Seebeck coefficient. Thermal conductivity is effectively reduced by the W substitution because of the large atomic mass and volume of W compared to the constituent elements of Fe 2 VAl alloy. The appreciable reduction of thermal conductivity, without a serious deterioration in electrical conduction, enhances the thermoelectric figure of merit in the Heusler alloy. V C 2012 American Institute of Physics.
Different versions of a thermoelectric unicouple composed of p-type Ca2.7Bi0.3Co4O9 (Co-349) and n-type La0.9Bi0.1NiO3 (Ni-113) bulks were constructed using Ag paste containing p- and n-type oxide powders, prepared from the same bulks, for connection of the p and n legs, respectively. Internal resistance (RI) of the unicouple corrected using Ag paste containing 6 wt. % of the oxide powders is 26.2mΩ at 1073K in air and decreases with increasing temperature. Maximum output power (Pmax), evaluated using the formula Pmax=VO2∕4RI, (VO is open-circuit voltage), is 94mW at 1073K (ΔT=500K) and increases with temperature. This value corresponds to a volume power density of 0.66W∕cm3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.