Circumstantial evidence has linked a new group of nidoviruses with respiratory disease in pythons, lizards, and cattle. We conducted experimental infections in ball pythons (Python regius) to test the hypothesis that ball python nidovirus (BPNV) infection results in respiratory disease. Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic-active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical signs throughout the experiment. Our findings establish a causal relationship between nidovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission.
Inclusion body disease (IBD) is an infectious disease originally described in captive snakes. It has traditionally been diagnosed by the presence of large eosinophilic cytoplasmic inclusions and is associated with neurological, gastrointestinal, and lymphoproliferative disorders. Previously, we identified and established a culture system for a novel lineage of arenaviruses isolated from boa constrictors diagnosed with IBD. Although ample circumstantial evidence suggested that these viruses, now known as reptarenaviruses, cause IBD, there has been no formal demonstration of disease causality since their discovery. We therefore conducted a long-term challenge experiment to test the hypothesis that reptarenaviruses cause IBD. We infected boa constrictors and ball pythons by cardiac injection of purified virus. We monitored the progression of viral growth in tissues, blood, and environmental samples. Infection produced dramatically different disease outcomes in snakes of the two species. Ball pythons infected with Golden Gate virus (GoGV) and with another reptarenavirus displayed severe neurological signs within 2 months, and viral replication was detected only in central nervous system tissues. In contrast, GoGV-infected boa constrictors remained free of clinical signs for 2 years, despite high viral loads and the accumulation of large intracellular inclusions in multiple tissues, including the brain. Inflammation was associated with infection in ball pythons but not in boa constrictors. Thus, reptarenavirus infection produces inclusions and inclusion body disease, although inclusions per se are neither necessarily associated with nor required for disease. Although the natural distribution of reptarenaviruses has yet to be described, the different outcomes of infection may reflect differences in geographical origin.IMPORTANCE New DNA sequencing technologies have made it easier than ever to identify the sequences of microorganisms in diseased tissues, i.e., to identify organisms that appear to cause disease, but to be certain that a candidate pathogen actually causes disease, it is necessary to provide additional evidence of causality. We have done this to demonstrate that reptarenaviruses cause inclusion body disease (IBD), a serious transmissible disease of snakes. We infected boa constrictors and ball pythons with purified reptarenavirus. Ball pythons fell ill within 2 months of infection and displayed signs of neurological disease typical of IBD. In contrast, boa constrictors remained healthy over 2 years, despite high levels of virus throughout their bodies. This difference matches previous reports that pythons are more susceptible to IBD than boas and could reflect the possibility that boas are natural hosts of these viruses in the wild.
The wheat curl mite (WCM) is a vector of three important wheat viruses in the U.S. Great Plains, wheat streak mosaic virus (WSMV), triticum mosaic virus (TriMV), and High Plains wheat mosaic virus (HPWMoV). This study was conducted to determine the current profile of WCM and WCM-transmitted viruses of wheat and their occurrence in Colorado, including novel wheat viruses via virome analysis. There was a high rate of virus incidence in symptomatic wheat samples collected in 2019 (95%) and 2020 (77%). Single infection of WSMV was most common in both years followed by coinfection with WSMV + TriMV and WSMV + HPWMoV. Both Type 1 and Type 2 mite genotypes were found in Colorado. There was high genetic diversity of WSMV and HPWMoV isolates, whereas TriMV isolates showed minimal sequence variation. Analysis of WSMV isolates revealed novel virus variants including one isolate from a variety trial, where severe disease symptoms were observed on wheat varieties carrying Wsm2, a known virus resistance loci. Virome analysis identified between two to four sequence variants of all eight RNA segments of HPWMoV, which suggests co-occurrence of multiple genotypes within host populations and presence of a possibly novel variant of HPWMoV. A possible novel virus, Tombusviridae sp. and several mycoviruses were identified. Overall, the data presented here highlights the need to define the effect of novel WCM-transmitted virus variants on disease severity, as well as the role of novel viruses.
The wheat curl mite (WCM)-transmissible wheat streak disease complex is the most serious disease of wheat in the U.S. Great Plains. In the current study, we determined the genetic variability in WCM and mite-transmitted viruses in Colorado and identified sources of resistance in Colorado wheat germplasm to wheat streak disease complex. We identified two distinct genotypes of WCM, Type 1 and Type 2 based on the ribosomal ITS1 region. Both genotypes were found to co-exist throughout the wheat producing regions of Colorado. Analysis of the whole genome and partial coat protein sequences revealed rich diversity of wheat streak mosaic virus (WSMV) and High Plains wheat mosaic virus (HPWMoV) isolates collected from Colorado, whereas triticum mosaic virus (TriMV) showed low sequence variability. Analysis of WSMV isolates revealed two novel isolates and one that was 100% similar to a new variant of WSMV from Kansas. Interestingly, between 2-4 genotypes of all 8 RNA segments of HPWMoV were identified, which suggests new variants of emaraviruses and co-occurrence of multiple strains within host populations. Several novel viruses including mycoviruses were identified for the first time in Colorado. We found variation in WSMV resistance among wheat varieties; however a variety that harbored dual resistance to mite and WSMV had lower virus titer compared to varieties that contained single resistance gene. This suggests that pyramiding genes will ensure improved and durable resistance. Future research may be aimed at elucidating the dynamics, diversity, and distribution of the new WSMV and HPWMoV isolates and their responses to wheat genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.