The outbreak of SARS-CoV-2 in December 2019 in China subsequently lead to a pandemic. Lack of vaccine and specific anti-viral drugs started a global health disaster. For a sustained control and protection, development of potential anti-viral drugs is one of the targeted approach. Although, designing and developing a panel of new drugs molecules are always encouraged. However, in the current emergency, drug repurposing study is one of the most effective and fast track option. The crystal structure of a SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) RNA Dependent RNA Polymerase (RdRp) has recently been deciphered through X-ray crystallography. The single-chain of core RNA Dependent RNA Polymerase relies on virus-encoded cofactors nsp7 and two units of nsp8 for its optimum function. This study explored the FDA approved database of 7922 molecules and screened against the core polymerase along with cofactors. Here we report a panel of FDA approved drugs that show substantial interactions with key amino acid residues of the active site. Interestingly, some of the identified drugs (Ornipressin, Lypressin, Examorelin, Polymyxin B1) bind strongly within the binding pockets of both forms of RdRp. Besides, we found strong candidates for the complex form as well which include Nacortocin, Cistinexine, Cisatracurium (among others). These drugs have the potential to be considered while contriving therapeutic options.
Isoflavenes have received the greatest research attention among the many groups of phytoestrogens. In this study, various isoflavene-based Mannich bases were selected for their theoretical studies. The purpose of this research was to discover the binding potential of all the designated Mannich bases acting as inhibitors against cancerous proteins EGFR, cMet, hTrkA, and HER2 (PDB codes: 5GTY, 3RHK, 6PL2, and 7JXH, respectively). For their virtual screening, DFT calculations and molecular docking studies were undertaken using in silico software. Docking studies predicted that ligands 5 and 15 exhibited the highest docking score by forming hydrogen bonds within the active pocket of protein 6PL2, ligands 1 and 15 both with protein 3RHK, and 7JXH, 12, and 17 with protein 5GTY. Rendering to the trends in polarizability and dipole moment, the energy gap values (0.2175 eV, 0.2106 eV) for the firm conformers of Mannich bases (1 and 4) replicate the increase in bioactivity and chemical reactivity. The energy gap values (0.2214 eV and 0.2172 eV) of benzoxazine-substituted isoflavene-based Mannich bases (9 and 10) reflect the increase in chemical potential due to the most stable conformational arrangements. The energy gap values (0.2188 eV and 0.2181 eV) of isoflavenes with tertiary amine-based Mannich bases (14 and 17) reflect the increase in chemical reactivity and bioactivity due to the most stable conformational arrangements. ADME was also employed to explore the pharmacokinetic properties of targeted moieties. This study revealed that these ligands have a strong potential to be used as drugs for cancer treatment.
The recent emergence of a novel coronavirus strain (SARS-CoV-2) has stimulated global efforts to identify potential drugs that target proteins expressed by this novel coronavirus. Among these, the main protease of SARS-CoV-2 (3CL-protease (3CLPro), also known as (MPro) is one of the best choices for the scientists to target. 3CLPro is involved in the processing of polyproteins into mature non-structural viral proteins. An X-ray crystallographic structure (PDB ID 6LU7) of this protein was obtained from the PDB database. ChemDiv libraries of ~80,000 antiviral and ~13,000 coronavirus-targeting molecules were screened against the 3D structure of 3CLPro of SARS-CoV-2. We have identified a panel of molecules that showed an activity and potentially block the active site of the SARS-CoV-2 main protease. These molecules can be investigated further to develop effective virus-inhibiting molecules to treat this highly distressing disease, causing extreme unrest across the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.