Phagocytosis is a pivotal process by which macrophages eliminate microorganisms after recognition by pathogen sensors. Here we unexpectedly found that the self ligand and cell surface receptor SLAM functioned not only as a costimulatory molecule but also as a microbial sensor that controlled the killing of Gram-negative bacteria by macrophages. SLAM regulated activity of the NADPH oxidase NOX2 complex and phagolysosomal maturation after entering the phagosome, following interaction with the bacterial outer membrane proteins OmpC and OmpF. SLAM recruited a complex containing the intracellular class III phosphatidylinositol kinase Vps34, its regulatory protein kinase Vps15 and the autophagy-associated molecule beclin-1 to the phagosome, which was responsible for inducing the accumulation of phosphatidylinositol-3-phosphate, a regulator of both NOX2 function and phagosomal or endosomal fusion. Thus, SLAM connects the Gram-negative bacterial phagosome to ubiquitous cellular machinery responsible for the control of bacterial killing.
In the original version of Figure 2B, two of the patient identifiers were incorrectly noted. OS-11 and OS-12 were listed twice. The second instances should have been labeled as CID-11 and CID-12, respectively. The correct figure panel is below.The authors regret the error.
Wiskott Aldrich syndrome (WAS) is caused by mutations in the WAS IntroductionWiskott-Aldrich syndrome (WAS) is a rare X-linked immunodeficiency caused by mutations of the WAS gene that is widely expressed within hematopoietic cells. 1 The clinical phenotype of WAS is characterized by congenital thrombocytopenia, combined immunodeficiency, and eczema. 1 The WAS protein (WASp) includes several functional domains that couple signal transduction to reorganization of the actin cytoskeleton. As a result, WASp has significant influence on processes such as cell adhesion, migration, assembly/turnover of cell surface receptors, and immunologic synapse formation. 1,2 Several studies in patients with WAS and in Was knock-out (WKO) mice have shown that WASp plays a critical role in the function of T and natural killer lymphocytes and dendritic cells. 1,3 However, the importance of WASp in B-cell development and function is less clearly defined. In vitro studies have shown that WASp-deficient B cells display defective actin polymerization on activation, 4 and impaired migration in response to CXCL13 5 ; however, calcium mobilization and proliferation after B-cell receptor ligation were found to be normal or only slightly reduced. 3 Studies in heterozygous Was ϩ/Ϫ mice have found progressive in vivo selection for WASp-expressing cells in T, B, and natural killer lineages. 6 Within the B-cell lineage, such selective advantage was especially prominent in marginal zone (MZ) B cells. 2,6 However, the in vivo effect of selective deficiency of WASp expression within a single lineage has not been analyzed so far and is of critical importance to understand WAS pathophysiology. Recently, with the use of a chimeric BM transplantation reconstitution model, Becker-Herman et al have provided evidence that lack of WASp expression in B lymphocytes causes immune dysregulation and may lead to fatal autoimmunity. 7 However, mixed chimerism in non-B lineages, irradiation-induced load of The online version of this article contains a data supplement.The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ''advertisement'' in accordance with 18 USC section 1734. 2819BLOOD, 22 MARCH 2012 ⅐ VOLUME 119, NUMBER 12For personal use only. on May 9, 2018. by guest www.bloodjournal.org From apoptotic bodies, and homeostatic B-cell proliferation may also have contributed to autoimmunity in that model.We describe here the generation of mice in which the Was locus has been floxed by homologous recombination. By crossing these mice to mb1-Cre knock-in mice, 8 which express the Cre recombinase under control of the CD79a promoter, the Was locus is selectively and efficiently deleted in B cells only, allowing analysis of the effect of B cell-restricted deficiency of WASp in vivo. Methods MiceAll mice were bred on a C57BL/6 background. WKO mice have been described. 3 Mb1-Cre mice 8 were a generous gift from Dr Michael Reth (Max Planck Institute of Immunobiology, ...
One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in Tcell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.