The microstructural morphology in additive manufacturing (AM) has a significant influence on the building structure. High-energy concentric heat source scanning leads to rapid heating and cooling during material deposition. This results in a unique microstructure. The size and morphology of the microstructure have a strong directionality, which depends on laser power, scanning rate, melt pool fluid dynamics, and material thermal properties, etc. The grain structure significantly affects its resistance to solidification cracking and mechanical properties. Microstructure control is challenging for AM considering multiple process parameters. A preheating base plate has a significant influence on residual stress, defect-free AM structure, and it also minimizes thermal mismatch during the deposition. In the present work, a simple single track deposition experiment was designed to analyze base plate preheating on microstructure. The microstructural evolution at different preheating temperatures was studied in detail, keeping process parameters constant. The base plate was heated uniformly from an external heating source and set the stable desired temperature on the surface of the base plate before deposition. A single track was deposited on the base plate at room temperature and preheating temperatures of 200 °C, 300 °C, 400 °C, and 500 °C. Subsequently, the resulting microstructural morphologies were analyzed and compared. The microstructure was evaluated using electron backscattered diffraction (EBSD) imaging in the transverse and longitudinal sections. An increase in grain size area fraction was observed as the preheating temperature increased. Base plate preheating did not show influence on grain boundary misorientation. An increase in the deposition depth was noticed for higher base plate preheating temperatures. The results were convincing that grain morphology and columnar grain orientation can be tailored by base plate preheating.
Manganese twinning induced plasticity (TWIP) steels are attractive materials for the automotive industry thanks to their combination of strength and excellent toughness. This article deals with basic microstructural and mechanical properties of sheet metal of two heats of low-carbon medium-manganese steel with different aluminium levels. Microstructure observation was carried out using optical and scanning electron microscopy. Electron backscatter diffraction (EBSD) and X-ray diffraction were used for phase analysis. In an experiment that focused on the weldability of both materials, sheet metals were laser-welded using various laser power settings, with and without shielding gas. Various combinations of joints between materials of the two heats and sheet metal conditions were tested (work-hardened upon cold rolling + annealed). Mechanical properties of the weld joints were determined using miniature tensile testing and conventional hardness measurement. The strengths of miniature specimens of the weld metal were very close to the strength of the base material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.