BackgroundPneumococcal serotyping is usually performed by Quellung reaction, considered the gold standard test. However the method cannot be used on culture-negative samples. Molecular methods can be a useful alternative. The aim of the study was to evaluate the use of Multiplex-sequential-PCR (MS-PCR) or Realtime-PCR on blood samples for diagnosis and serotyping of invasive pneumococcal disease (IPD) in a pediatric clinical setting.Methodology/Principal FindingsSensitivity and specificity of MS-PCR and Realtime-PCR have been evaluated both on 46 well characterized pneumococcal isolates and on 67 clinical samples from children with culture-negative IPD. No difference in sensitivity and specificity between MS-PCR and Realtime PCR was found when the methods were used on isolates: both methods could type 100% isolates and the results were always consistent with culture-based methods. On the contrary, when used on clinical samples 43/67 (64.2%) were typeable by MS-PCR and 61/67 (91.0%) by Realtime-PCR (p = 0.0004,K Cohen 0.3, McNemar's p<0.001). Non-typeability by MS-PCR was associated in 18/20 cases (90.0%) with low bacterial load. The difference between the two methods was present both when they were used on normally sterile fluids (respectively 31/33 (93.9%) typeable samples for Realtime-PCR and 24/33 (72.7%) for MS-PCR, p = 0.047, 95%CL 0.03–0.98; K Cohen 0.3; McNemar's p = 0.0016) and when they were used on nasopharyngeal swabs (respectively 30/34 (88.2%) typeable samples for Realtime-PCR and 19/34 (55.9%) for MS-PCR, p = 0.007, 95%CL 0.04–0.66); the presence of multiple pneumococcal serotypes in nasopharyngeal swabs was found more frequently by Realtime PCR (19/30; 63.3%) than by Multiplex-sequential PCR (3/19; 15.8%; p = 0.003;95%CL 1.87–39.97).Conclusions/SignificanceIn conclusion, both MS-PCR and Realtime PCR can be used for pneumococcal serotyping of most serotypes/serogroups directly on clinical samples from culture-negative patients but Realtime-PCR appears more sensitive.
RT-PCR allows diagnosis and serotyping of pneumococcal bacteremic community-acquired pneumonia in children and is an important tool for evaluating serotype distribution in culture-negative samples.
The diagnosis of invasive pneumococcal disease (IPD) is currently based on culture methods, which lack sensitivity, especially after antibiotic therapy. Molecular methods have improved sensitivity and do not require viable bacteria; however, their use is complicated by reports of low specificity with some assays. The present study investigated the specificity of a real-time PCR targeting lytA for the detection of IPD. A group of 147 healthy children, aged 6 months to 16 years (mean 6.4 years, median 4.9 years, interquartile range 6.4 years), who were in hospital for routine examinations, were tested for pneumococcal carrier status and for the presence of detectable pneumococcal DNA in their blood by real-time PCR targeting the pneumococcal lytA gene. In addition, 35 culture-positive biological samples were analysed. Urine was examined for the presence of pneumococcal DNA and C-polysaccharide antigen. Carriage was detected in 77 of the 147 subjects (52.4 %); however, regardless of carrier status, none of the subjects had a positive result from blood. Analysis of the culture-positive biological samples yielded positive results in 100 % (15/15) of cerebrospinal fluid samples and 95 % (19/20) of blood samples. All urine samples from healthy carriers were negative for DNA, whilst antigenuria was detected in 44/77 carriers (57.1 %). In conclusion, real-time PCR is both sensitive and specific and can be a useful tool in the routine diagnosis of IPD. Its sensitivity, which surpasses that of other methods for this purpose, does not come at the cost of reduced specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.