Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time‐series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall deficit and warm temperatures. Large availability of storm‐felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. The large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large‐scale drivers can be used as early warning indicators of increasing local outbreak probability.
Summary1. Priority effects have been hypothesized to have long-lasting impact on community structure in natural ecosystems. Long-term studies of priority effects in natural ecosystems are however sparse, especially in terrestrial ecosystems. 2. Wood decay is a slow process involving a high diversity of insect and fungus species. Species interactions that drive change in communities of insects and fungi during wood decay are poorly understood because of a lack of sufficient long-term studies. 3. In this paper, we followed the colonization and succession of wood-living insects and fungi on cut trees during 15 years, from tree death and onwards, in a boreal forest landscape. We test the long-term priority effects hypothesis that the identity and abundance of species that colonize first affect the colonization success of later-arriving species. We also hypothesize that species interact in both facilitative and inhibitory ways, which ultimately affect habitat quality for a red-listed late-succession beetle species. 4. Possible causal associations between species were explored by path analysis. The results indicate that one bark beetle species, Hylurgops palliatus, and one wood-borer species, Monochamus sutor, which colonized the wood during the first year after cutting, influenced the occurrence of a rare, wood-living beetle, Peltis grossa, that started to emerge from the stumps about 10 years later. The positive effects of Hylurgops palliatus and negative effects of M. sutor were largely mediated through the wood-decaying fungus species Fomitopsis pinicola. 5. The study shows that variable priority effects may have long-lasting impact on community assembly in decaying wood. The study also exemplifies new possibilities for managing populations of threatened species by exploring links between early, well-understood species guilds and late, more poorly understood species guilds.
Predation is an interaction during which an organism kills and feeds on another organism. Past and current interest in studying predation in terrestrial habitats has yielded a number of methods to assess invertebrate predation events in terrestrial ecosystems. We provide a decision tree to select appropriate methods for individual studies. For each method, we then present a short introduction, key examples for applications, advantages and disadvantages, and an outlook to future refinements. Video and, to a lesser extent, live observations are recommended in studies that address behavioral aspects of predator–prey interactions or focus on per capita predation rates. Cage studies are only appropriate for small predator species, but often suffer from a bias via cage effects. The use of prey baits or analyses of prey remains are cheaper than other methods and have the potential to provide per capita predation estimates. These advantages often come at the cost of low taxonomic specificity. Molecular methods provide reliable estimates at a fine level of taxonomic resolution and are free of observer bias for predator species of any size. However, the current PCR‐based methods lack the ability to estimate predation rates for individual predators and are more expensive than other methods. Molecular and stable isotope analyses are best suited to address systems that include a range of predator and prey species. Our review of methods strongly suggests that while in many cases individual methods are sufficient to study specific questions, combinations of methods hold a high potential to provide more holistic insights into predation events. This review presents an overview of methods to researchers that are new to the field or to particular aspects of predation ecology and provides recommendations toward the subset of suitable methods to identify the prey of invertebrate predators in terrestrial field research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.