All hierarchical levels in bone are known to contribute to its mechanical behavior. The basic building block is the mineralized collagen fibril which is assembled into larger structures with varying fibrillar organization. The collagen organization increases from unordered woven bone in the callus which is gradually replaced by higher ordered lamellar bone during bone development and healing and finally results in cortical lamellar bone with highest degree of organization. The structural and mechanical description of these organizational motifs is not yet complete. We investigated a femoral osteotomy mouse model and analyzed newly formed callus tissue and mature lamellar bone in the cortex. This model exhibits three bone types with different fibrillar organization: (i) woven, (ii) moderate lamellar and (iii) lamellar. Using high resolution synchrotron small angle X-ray scattering in combination with back-scattered electron imaging we characterized the ultrastructure of the different regions in terms of degree of mineralization, averaged mineral particle thickness and mineral particle orientation. We further used microindentation to correlate hardness, induced crack lengths and crack patterns with the bone ultrastructure. The newly formed callus tissue contains highly mineralized woven bone islands, featuring thick but poorly ordered mineral particles. Such islands are surrounded by layers of lamellar bone with a low mineralization level and thin but well aligned particles. Callus tissue shows lower hardness values and longer cracks than the cortex. Callus woven bone exhibits shorter cracks than callus lamellar bone. However, the poorly mineralized callus lamellar bone shows crack propagation mechanisms similar to cortical bone due to its very similar lamellar organization and high degree of mineral particle orientation. In conclusion we demonstrate that woven and increasingly higher oriented lamellar bone do not only differ in collagen fibril organization, but also that the amount, orientation and different shape of mineral particles are also likely to contribute to the reduced mechanical competence of woven as compared to lamellar bone. This may explain why many organisms replace less organized bone types with higher organized ones.
Loading can increase bone mass and size and this response is reduced
with aging. It is unclear, however how loading affects bone mineral and matrix
properties. Fourier Transform Infrared Imaging and high resolution synchrotron
scanning small angle X-ray scattering were used to study how bone’s
microscale and nanoscale compositional properties were altered in the tibial
midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of
controlled in vivo compressive loading in comparison to
physiological loading. The effect of controlled loading on bone composition
varied with animal age, since it predominantly influenced the bone composition
of elderly mice. Interestingly, controlled loading led to enhanced collagen
maturity in elderly mice. In addition, although the rate of bone formation was
increased by controlled loading based on histomorphometry, the newly formed
tissue had similar material quality to new bone tissue formed during
physiological loading. Similar to previous studies, our data showed that bone
composition was animal and tissue age dependent during physiological loading.
The findings that the new tissue formed in response to controlled loading and
physiological loading had similar bone composition and that controlled loading
enhanced bone composition in elderly mice further supports the use of physical
activity as a noninvasive treatment to enhance bone quality as well as maintain
bone mass in individuals suffering from age-related bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.