In humans, the incidence of congenital defects of the intraembryonic celom and its associated structures has increased over recent decades. Surgical treatment of abdominal and diaphragmatic malformations resulting in congenital hernia requires deep knowledge of ventral body closure and the separation of the primary body cavities during embryogenesis. The correct development of both structures requires the coordinated and fine-tuned synergy of different anlagen, including a set of molecules governing those processes. They have mainly been investigated in a range of vertebrate species (e.g., mouse, birds, and fish), but studies of embryogenesis in humans are rather rare because samples are seldom available. Therefore, we have to deal with a large body of conflicting data concerning the formation of the abdominal wall and the etiology of diaphragmatic defects. This review summarizes the current state of knowledge and focuses on the histological and molecular events leading to the establishment of the abdominal and thoracic cavities in several vertebrate species. In chronological order, we start with the onset of gastrulation, continue with the establishment of the three-dimensional body shape, and end with the partition of body cavities. We also discuss well-known human etiologies.
PurposeAmong the few studies that have examined the development of the anterior abdominal wall, several are based on incomplete “series”, substituted in many cases by non-human specimens.Material and MethodsIn total, 19 human embryos corresponding to Carnegie stages 15–23, 36 fetuses with estimated gestational ages ranging from 9 weeks to term, and eight neonates were included in this study. All specimens belong to the collection of the Department of Anatomy and Embryology at the Complutense University of Madrid.ResultsThe muscles of the anterior abdominal wall appear in the dorsal region at stages 15 and 16 (33–37 days). At stages 17 and 18 (41–44 days), this muscular mass grows ventrally and splits into two sheets: the external abdominal oblique muscle and the common mass of the internal abdominal oblique, and the transversus abdominis muscles, all of which end ventrally in the primitive condensation of the rectus abdominis. In embryos at stages 19 and 20 (48 days), the anterior abdominal wall continues to show an umbilical hernia in the amniotic cavity. However, a narrow neck is apparent for the first time and there is a wider anterior abdominal wall below the hernia made up of dense mesenchyme tissue without layers and showing the primordia of the umbilical canal. In embryos at stages 21, 22, and 23 (51–57 days), the abdominal muscles and aponeuroses cross the midline (linea alba) covering the rectus abdominis and pyramidalis muscles while the umbilical hernia has shrunk. In fetuses during the 9th and 10th weeks, the umbilical hernia becomes encircled by the rectus abdominis muscle, its aponeurosis, and the three layers of lateral abdominal muscles, which are more developed and covered by Camper's and Scarpa's fasciae. The inguinal canal has a course and relationships like those described in adults, with Hesselbach's ligament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.