Abst ract. During renal ischemia, ATP is degraded to hypoxanthine. When xanthine oxidase converts hypoxanthine to xanthine in the presence of molecular oxygen, superoxide radical (O°) is generated. We studied the role ofO°and its reduction product OH * in mediating renal injury after ischemia. Male Sprague-Dawley rats underwent right nephrectomy followed by 60 min of occlusion of the left renal artery. The O2 scavenger superoxide dismutase (SOD) was given 8 min before clamping and before release of the renal artery clamp. Control rats received 5% dextrose instead. Plasma creatinine was lower in SOD treated rats: 1.5, 1.0, and 0.8 mg/dl vs. 2.5, 2.5, and 2.1 mg/dl at 24, 48, and 72 h postischemia. 24 h after ischemia inulin clearance was higher in SOD treated rats than in controls (399 vs. 185 ,gl/min). Renal blood flow, measured after ischemia plus 15 min of reflow, was also greater in SOD treated than in control rats. Furthermore, tubular injury, judged histologically in perfusion fixed spedimens, was less in SOD treated rats. Rats given SOD inactivated by prior incubation with diethyldithiocarbamate had plasma creatinine values no different from those of control rats. The OH * scavenger dimethylthiourea (DMTU) was given before renal artery occlusion. DMTU treated rats had lower plasma creatinine than did controls: 1.7, 1.7, and 1.3 mg/dl vs. 3.2, 2.2, and 2.4 mg/dl at 24, 48, and 72 h postischemia. Neither SOD nor DMTU caused an increase in renal blood flow, urine flow rate, or solute excretion in normal rats. The xanthine oxidase inhibitor allopurinol was given before ischemia to prevent the generation of oxygen free radicals. Plasma creatinine This work was presented in abstract form to the Central Society for Clinical Research, Chicago, 1983 and to the American Society of Nephrology, 16th annual meeting, Washington DC, 1983. Received for publication 13 December 1983 and in revised form 6 June 1984.was lower in allopurinol treated rats: 2.7, 2.2, and 1.4 mg/dl vs. 3.6, 3.5, and 2.3 mg/dl at 24, 48, and 72 h postischemia. Catalase treatment did not protect against renal ischemia, perhaps because its large size limits glomerular filtration and access to the tubular lumen. Superoxide-mediated lipid peroxidation was studied after renal ischemia. 60 min of ischemia did not increase the renal content of the lipid peroxide malondialdehyde, whereas ischemia plus 15 min reflow resulted in a large increase in kidney lipid peroxides. Treatment with SOD before renal ischemia prevented the reflow-induced increase in lipid peroxidation in renal cortical mitochondria but not in crude cortical homogenates. In summary, the oxygen free radical scavengers SOD and DMTU, and allopurinol, which inhibits free radical generation, protected renal function after ischemia. Reperfusion after ischemia resulted in lipid peroxidation; SOD decreased lipid peroxidation in cortical mitochondria after renal ischemia and reflow. We conclude that restoration of oxygen supply to ischemic kidney results in the production of oxygen free rad...
In ischemic acute renal failure oxygen free radicals may mediate injury. In addition, iron appears to play a critical role in hydroxyl radical formation and lipid peroxidation during reperfusion of ischemic kidneys. To determine whether iron may play a similar role in pigment (heme protein)-induced acute renal failure, we studied the effects of the iron chelator deferoxamine in two experimental models of pigment-induced acute renal failure, intramuscular glycerol injection and intravenous hemoglobin infusion without and with concurrent ischemia in the rat. Intramuscular injection of 50% glycerol (5 ml/kg) caused inulin clearance to fall to 0.13 +/- 0.03 (SE) ml/min (normal value, 1.0-1.2 ml/min). Continuous infusion of deferoxamine beginning at the time of glycerol injection significantly attenuated this renal dysfunction. Deferoxamine-treated animals had an inulin clearance of 0.37 +/- 0.06 ml/min (P less than 0.01). Glycerol injection was also associated with significant lipid peroxidation, measured as renal malondialdehyde content. Deferoxamine-treated glycerol-injected rats had renal malondialdehyde content not significantly different from control animals. In another model of heme pigment-induced renal injury, hemoglobin was infused to produce hemoglobinuria. Inulin clearance 1 h after hemoglobin infusion was significantly reduced to 0.84 +/- 0.5 ml/min (P less than 0.025). Infusion of deferoxamine after hemoglobin prevented the hemoglobin-induced decrease in inulin clearance. Thirty minutes of renal ischemia followed by infusion of hemoglobin resulted in more severe renal dysfunction with inulin clearance of 0.54 +/- 0.08 ml/min. Deferoxamine infused at the time of reperfusion attenuated the fall in glomerular filtration rate after ischemia and hemoglobin infusion:inulin clearance 1.04 +/- 0.07 (P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
The effect of acute and chronic administration of cyclosporine on systemic and renal hemodynamics was studied in conscious rats. Infusion of cyclosporine in a dose of 20 mg/kg (Cy 20) resulted in a significant fall in renal blood flow (RBF) (3.4 vs. 6.5 ml/min/g, P less than 0.05) and a rise in renal vascular resistance (RVR) (36.9 vs. 20.6 mm Hg/ml/min/g, P less than 0.05). Infusion of cyclosporine at a dose of 10 mg/kg (Cy 10) did not result in a significant change in RBF or RVR. Both doses of cyclosporine resulted in stimulation of plasma renin activity (PRA) from control values of 5.6 +/- 0.8 ng/ml/hr to 11.6 +/- 2.0 with 10 mg/kg and 26.7 +/- 5.6 with 20 mg/kg. Urinary 6-keto-PGF1 alpha excretion increased from control values of 14.0 +/- 2.0 ng/6 hr to 22.7 +/- 2.2 with 10 mg/kg and 25.0 +/- 2.0 with 20 mg/kg. Similar effects on RBF, RVR, PRA, and 6-keto-PGF1 alpha excretion were seen after chronic administration of cyclosporine (20 mg/kg i.p. for 7 days). Pretreatment of animals with captopril did not prevent the fall in RBF after cyclosporine, suggesting that the vasoconstriction was not mediated by angiotensin II. Animals treated with meclofenamate demonstrated reduction in RBF with 10 mg/kg cyclosporine (4.3 vs. 7.0 ml/min/g, P less than 0.05), suggesting that prostaglandins protect against the vasoconstrictor effect of cyclosporine. Administration of phenoxybenzamine after cyclosporine improved RBF (5.0 vs. 3.4 ml/min/g) and restored RVR to normal. Similarly, renal denervation dramatically reduced the fall in RBF after cyclosporine (innervated right kidney 3.6 vs. denervated left kidney 6.0 ml/min/g, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
To determine whether iron participates in free radical-mediated postischemic renal injury and lipid peroxidation, we examined the effects of removal of endogenous iron or provision of exogenous iron following renal ischemia, as well as the effects of renal ischemia and reperfusion on renal venous and urinary "free" iron. Rats underwent 60 minutes of renal ischemia and were studied after either 24 hours (inulin clearance) or 15 minutes (renal malondialdehyde content) of reperfusion. Infusion of the iron chelator deferoxamine (200 mg/kg/hr) during the first 60 minutes of reperfusion resulted in a marked improvement in renal function (inulin clearance: 879 +/- 154 vs. 314 +/- 74 microliter/min; P less than 0.025) and a reduction in lipid peroxidation (renal malondialdehyde: 0.449 +/- 0.06 vs. 0.698 +/- 0.08 mmol/mg prot; P less than 0.05) compared to control animals. Infusion of 50 mg/kg/hr deferoxamine also protected renal function after ischemia (inulin clearance: 624 +/- 116 vs. 285 +/- 90 microliter/min; P less than 0.05) and resulted in less histologic injury. Iron-saturated deferoxamine had no protective effect. Conversely, infusion of the iron complex EDTA-FeCl3 during reperfusion exacerbated postischemic renal dysfunction and lipid peroxidation. Following renal ischemia there was no detectable increase in "free" iron in arterial or renal venous plasma. However, urinary "free" iron increased 10- to 20-fold following reperfusion. Iron chelators which underwent filtration and gained access to this free iron in the urine (free deferoxamine or inulin-conjugated deferoxamine) provided protection, whereas a chelator confined to the vascular space (dextran-conjugated deferoxamine) did not.(ABSTRACT TRUNCATED AT 250 WORDS)
Reperfusion of tissues after interruption of their vascular supply causes free-radical generation that leads to tissue damage, a scenario referred to as “reperfusion injury.” Because sickle disease involves repeated transient ischemic episodes, we sought evidence for excessive free-radical generation in sickle transgenic mice. Compared with normal mice, sickle mice at ambient air had a higher ethane excretion (marker of lipid peroxidation) and greater conversion of salicylic acid to 2,3-dihydroxybenzoic acid (marker of hydroxyl radical generation). During hypoxia (11% O2), only sickle mice converted tissue xanthine dehydrogenase to oxidase. Only the sickle mice exhibited a further increase in ethane excretion during restitution of normal oxygen tension after 2 hours of hypoxia. Only the sickle mice showed abnormal activation of nuclear factor–κB after exposure to hypoxia-reoxygenation. Allopurinol, a potential therapeutic agent, decreased ethane excretion in the sickle mice. Thus, sickle transgenic mice exhibit biochemical footprints consistent with excessive free-radical generation even at ambient air and following a transient induction of enhanced sickling. We suggest that reperfusion injury physiology may contribute to the evolution of the chronic organ damage characteristic of sickle cell disease. If so, novel therapeutic approaches might be of value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.