Background Subungual exostosis is a relatively common benign bone tumor that occurs in the distal phalanges of the toes and can be a source of pain and nail deformity. There is controversy about the treatment of these lesions and there are few studies that have synthesized what is known and provided meaningful information on treatment.
Glucagon-like peptide-2 (GLP-2) is a 33 amino acid gastrointestinal hormone that regulates epithelial growth in the intestine. Dipeptidylpeptidase IV cleaves GLP-2 at the position 2 alanine, resulting in the inactivation of peptide activity. To understand the structural basis for GLP-2 action, we studied receptor binding and activation for 56 GLP-2 analogues with either position 2 substitutions or alanine replacements along the length of the peptide. The majority of position 2 substitutions exhibited normal to enhanced GLP-2 receptor (GLP-2R) binding; in contrast, position 2 substitutions were less well tolerated in studies of receptor activation as only Gly, Ile, Pro, alpha-aminobutyric acid, D-Ala, or nor-Val substitutions exhibited enhanced GLP-2R activation. In contrast, alanine replacement at positions 5,6,17, 20, 22, 23, 25, 26, 30, and 31 led to diminished GLP-2R binding. Position 2 substitutions containing Asp, Leu, Lys, Met, Phe, Trp, and Tyr, and Ala substitutions at positions 12 and 21 exhibited normal to enhanced GLP-2R binding but greater than 75% reduction in receptor activation. D-Ala(2), Pro(2) and Gly(2), Ala(16) exhibited significantly lower EC(50)s for receptor activation than the parent peptide (p < 0.01-0.001). Circular dichroism analysis indicated that the enhanced activity of these GLP-2 analogues was independent of the alpha-helical content of the peptide. These results indicate that single amino acid substitutions within GLP-2 can confer structural changes to the ligand-receptor interface, allowing the identification of residues important for GLP-2R binding and receptor activation.
Glucagon-like peptide-2 (GLP-2) increases small intestinal growth and function in rodents and human subjects. GLP-2 exerts its effects through a seven-transmembrane domain, G protein-coupled receptor (GLP-2R), stimulating cAMP generation and activating protein kinase A signaling in heterologous cell lines transfected with the GLP-2R. As intestinal cell lines expressing the GLP-2R have not been identified, we developed methods for studying GLP-2R signaling in the rat small intestinal mucosa in vitro. Isolated rat intestinal mucosal cells expressed mRNA transcripts for the GLP-2R, as well as for chromogranin A and beta-tubulin III, markers for enteroendocrine and neural cells, respectively. cAMP production in response to [Gly2]GLP-2, a degradation-resistant analog of GLP-2, was maximal at 10-11 m (268 +/- 93% of control, P < 0.001), with reduced cAMP accumulation observed at higher doses. The cAMP response was diminished by pretreatment with 10-9 m GLP-2, and was abolished by pretreatment with 10-6 m GLP-2 (P < 0.05), indicating receptor desensitization. GLP-2 treatment of isolated mucosal cells increased 3H-thymidine incorporation (to 128 +/- 8% of controls, P < 0.05), and this was prevented by inhibition of the protein kinase A pathway with H89. In contrast, GLP-2 did not affect p44/p42 MAPK phosphorylation or the levels of cytosolic calcium in the mucosal cell preparation. These results provide the first evidence that activation of the endogenous rat mucosal GLP-2 receptor is linked to activation of a cAMP/protein kinase A-dependent, growth-promoting pathway in vitro.
Chondral and osteochondral fractures of the lower extremities are important injuries because they can cause pain and dysfunction and often lead to osteoarthritis. These injuries can be misdiagnosed initially which may impact on the healing potential and result in poor long-term outcome. This comprehensive review focuses on current pitfalls in diagnosing acute osteochondral lesions, potential investigative techniques to minimize diagnostic errors as well as surgical treatment options. Acute osteochondral fractures are frequently missed and can be identified more accurately with specific imaging techniques. A number of different methods can be used to fix these fractures but attention to early diagnosis is required to limit progression to osteoarthritis. These fractures are common with joint injuries and early diagnosis and treatment should lead to improved long term outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.