Modern commercial tomato varieties are substantially less flavorful than heirloom varieties. To understand and ultimately correct this deficiency, we quantified flavor-associated chemicals in 398 modern, heirloom, and wild accessions. A subset of these accessions was evaluated in consumer panels, identifying the chemicals that made the most important contributions to flavor and consumer liking. We found that modern commercial varieties contain significantly lower amounts of many of these important flavor chemicals than older varieties. Whole-genome sequencing and a genome-wide association study permitted identification of genetic loci that affect most of the target flavor chemicals, including sugars, acids, and volatiles. Together, these results provide an understanding of the flavor deficiencies in modern commercial varieties and the information necessary for the recovery of good flavor through molecular breeding.
SummaryVolatile terpenoid compounds, potentially derived from carotenoids, are important components of flavor and aroma in many fruits, vegetables and ornamentals. Despite their importance, little is known about the enzymes that generate these volatiles. The tomato genome contains two closely related genes potentially encoding carotenoid cleavage dioxygenases, LeCCD1A and LeCCD1B. A quantitative reverse transcriptasepolymerase chain reaction analysis revealed that one of these two genes, LeCCD1B, is highly expressed in ripening fruit (4 days post-breaker), where it constitutes 0.11% of total RNA. Unlike the related neoxanthin cleavage dioxygenases, import assays using pea chloroplasts showed that the LeCCD1 proteins are not plastidlocalized. The biochemical functions of the LeCCD1 proteins were determined by bacterial expression and in vitro assays, where it was shown that they symmetrically cleave multiple carotenoid substrates at the 9,10 (9¢,10¢) positions to produce a C 14 dialdehyde and two C 13 cyclohexones that vary depending on the substrate. The potential roles of the LeCCD1 genes in vivo were assessed in transgenic tomato plants constitutively expressing the LeCCD1B gene in reverse orientation. This over-expression of the antisense transcript led to 87-93% reductions in mRNA levels of both LeCCD1A and LeCCD1B in the leaves and fruits of selected lines. Transgenic plants exhibited no obvious morphological alterations. High-performance liquid chromatography analysis showed no significant modification in the carotenoid content of fruit tissue. However, volatile analysis showed a ‡50% decrease in b-ionone (a b-carotene-derived C 13 cyclohexone) and a ‡60% decrease in geranylacetone (a C 13 acyclic product likely derived from a lycopene precursor) in selected lines, implicating the LeCCD1 genes in the formation of these important flavor volatiles in vivo.
An important phenylalanine-derived volatile compound produced by plants is 2-phenylethanol. It is a major contributor to flavor in many foods, including fresh fruits, such as tomato, and an insectattracting scent in roses and many other flowers. Despite the centrality of 2-phenylethanol to flavor and fragrance, the plant genes responsible for its synthesis have not been identified. Here, we describe a biosynthetic pathway for 2-phenylethanol and other phenylalanine-derived volatiles in tomato fruits and a small family of decarboxylases (LeAADC1A, LeAADC1B, and LeAADC2) that can mediate that pathway's first step. These enzymes each catalyze conversion of phenylalanine to phenethylamine and tyrosine to tyramine. Although tyrosine is the preferred substrate in vitro, phenylalanine levels in tomato fruits far exceed those of tyrosine, indicating that phenylalanine is a physiological substrate. Consistent with this view, overexpression of either LeAADC1A or LeAADC2 in transgenic tomato plants resulted in fruits with up to 10-fold increased emissions of the products of the pathway, including 2-phenylacetaldehyde, 2-phenylethanol, and 1-nitro-2-phenylethane. Further, antisense reduction of LeAADC2 significantly reduced emissions of these volatiles. Besides establishing a biosynthetic route, these results show that it is possible to change phenylalanine-based flavor and aroma volatiles in plants by manipulating expression of a single gene. metabolic engineering ͉ phenylalanine ͉ taste
Although human perception of food flavors involves integration of multiple sensory inputs, the most salient sensations are taste and olfaction. Ortho- and retronasal olfaction are particularly crucial to flavor because they provide the qualitative diversity so important to identify safe versus dangerous foods. Historically, flavor research has prioritized aroma volatiles present at levels exceeding the orthonasally measured odor threshold, ignoring the variation in the rate at which odor intensities grow above threshold. Furthermore, the chemical composition of a food in itself tells us very little about whether or not that food will be liked. Clearly, alternative approaches are needed to elucidate flavor chemistry. Here we use targeted metabolomics and natural variation in flavor-associated sugars, acids, and aroma volatiles to evaluate the chemistry of tomato fruits, creating a predictive and testable model of liking. This nontraditional approach provides novel insights into flavor chemistry, the interactions between taste and retronasal olfaction, and a paradigm for enhancing liking of natural products. Some of the most abundant volatiles do not contribute to consumer liking, whereas other less abundant ones do. Aroma volatiles make contributions to perceived sweetness independent of sugar concentration, suggesting a novel way to increase perception of sweetness without adding sugar.
SummaryFruit ripening in tomato requires the coordination of both developmental cues and the phytohormone ethylene. The multigene ethylene receptor family has been shown to negatively regulate ethylene signal transduction and suppress ethylene responses. Here we demonstrate that reduction in the levels of either of two family members, LeETR4 or LeETR6, causes an early-ripening phenotype. We provide evidence that the receptors are rapidly degraded in the presence of ethylene, and that degradation probably occurs through the 26S proteasome-dependent pathway. Ethylene exposure of immature fruits causes a reduction in the amount of receptor protein and earlier ripening. The results are consistent with a model in which receptor levels modulate timing of the onset of fruit ripening by measuring cumulative ethylene exposure.
Fresh tomato fruit flavour is the sum of the interaction between sugars, acids, and a set of approximately 30 volatile compounds synthesized from a diverse set of precursors, including amino acids, lipids, and carotenoids. Some of these volatiles impart desirable qualities while others are negatively perceived. As a first step to identify the genes responsible for the synthesis of flavour-related chemicals, an attempt was made to identify loci that influence the chemical composition of ripe fruits. A genetically diverse but well-defined Solanum pennellii IL population was used. Because S. pennellii is a small green-fruited species, this population exhibits great biochemical diversity and is a rich source of genes affecting both fruit development and chemical composition. This population was used to identify multiple loci affecting the composition of chemicals related to flavour. Twenty-five loci were identified that are significantly altered in one or more of 23 different volatiles and four were altered in citric acid content. It was further shown that emissions of carotenoid-derived volatiles were directly correlated with the fruit carotenoid content. Linked molecular markers should be useful for breeding programmes aimed at improving fruit flavour. In the longer term, the genes responsible for controlling the levels of these chemicals will be important tools for understanding the complex interactions that ultimately integrate to provide the unique flavour of a tomato.
The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.
The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers