Approximately 85% of the global forest estate is neither formally protected nor in areas dedicated to intensive wood production (e.g., plantations). Given the spatial extent of unprotected forests, finding management approaches that will sustain their multiple environmental, economic, and cultural values and prevent their conversion to other uses is imperative. The major global challenge of native forest management is further demonstrated by ongoing steep declines in forest biodiversity and carbon stocks. Here, we suggest that an essential part of such management—supplementing the protection of large reserves and sensitive areas within forest landscapes (e.g., aquatic features)—is the adoption of the retention approach in forests where logging occurs. This ecological approach to harvesting provides for permanent retention of important selected structures (e.g., trees and decayed logs) to provide for continuity of ecosystem structure, function, and species composition in the postharvest forest. The retention approach supports the integration of environmental, economic, and cultural values and is broadly applicable to tropical, temperate, and boreal forests, adaptable to different management objectives, and appropriate in different societal settings. The widespread adoption of the retention approach would be one of the most significant changes in management practice since the onset of modern high‐yield forestry.
Lindenmayer et al. proposed that logging makes "some kinds of forests more prone to increased probability of ignition and increased fire severity." The proposition was developed most strongly in relation to the wet eucalypt forests of south-eastern Australia. A key argument was that logging in wet forests results in drier forests that tend to be more fire-prone, and this argument has gained prominence both in the literature and in policy debate. We find no support for that argument from considerations of eucalypt stand development, and from reanalysis of the only Australian study cited by Lindenmayer et al. In addition, there is no evidence from recent megafires in Victoria that younger regrowth (<10 years) burnt with greater severity than older forest (>70 years); furthermore, forests in reserves (with no logging) did not burn with less severity than multiple-use forests (with some logging). The flammability of stands of different ages can be explained in terms of stand structure and fuel accumulation, rather than as a dichotomy of regrowth stands being highly flammable but mature and old-growth stands not highly flammable. Lack of management of fire-adapted ecosystems carries long-term social, economic, and environmental consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.