A novel nanofibrous construct for promoting peripheral nerve repair was fabricated and tested in a rat sciatic nerve defect model. The conduit is made out of bilayered nanofibrous membranes with the nanofibers longitudinally aligned in the lumen and randomly oriented on the outer surface. The intra-luminal guidance channel is made out of aligned nanofibrous yarns. In addition, biomolecules such as laminin and nerve growth factor were incorporated in the nanofibrous nerve construct to determine their efficacy in in vivo nerve regeneration. Muscle reinnervation, withdrawal reflex latency, histological, axon density and electrophysiology tests were carried out to compare the efficacy of nanofibrous constructs with an autograft. Our study showed mixed results when comparing the artificial constructs with an autograft. In some cases, the nanofibrous conduit with aligned nanofibrous yarn as an intra-luminal guidance channel performs better than the autograft in muscle reinnervation and withdrawal reflex latency tests. However, the axon density count is highest in the autograft at mid-graft. Functional recovery was improved with the use of the nerve construct which suggested that this nerve implant has the potential for clinical usage in reconstructing peripheral nerve defects.
We propose a three-tier clinical classification system that can aid in prognosis and guidance in the treatment of pyogenic flexor tenosynovitis of the upper extremity.
Most standard textbooks of hand surgery quote the prevalence of absence of palmaris longus at around 15%. However, this figure varies considerably in reports from different ethnic groups. We studied 329 Chinese men and women and found palmaris longus to be absent unilaterally in 3.3%, and bilaterally in 1.2%, with an overall prevalence of absence of 4.6%. There was no significant difference in its absence with regard to the body side or the sex. Our literature review revealed a low prevalence of absence in Asian, Black and Native American populations and a much higher prevalence of absence in Caucasian populations. It is clear that a standard prevalence of absence of the palmaris longus cannot be applied to all populations.
Liposarcomas (LPSs) are a group of malignant mesenchymal tumors showing adipocytic differentiation. Here, to gain insight into the enhancer dysregulation and transcriptional addiction in this disease, we chart super-enhancer structures in both LPS tissues and cell lines. We identify a bromodomain and extraterminal (BET) protein-cooperated FUS-DDIT3 function in myxoid LPS and a BET protein-dependent core transcriptional regulatory circuitry consisting of FOSL2, MYC, and RUNX1 in de-differentiated LPS. Additionally, SNAI2 is identified as a crucial downstream target that enforces both proliferative and metastatic potentials to de-differentiated LPS cells. Genetic depletion of BET genes, core transcriptional factors, or SNAI2 mitigates consistently LPS malignancy. We also reveal a compelling susceptibility of LPS cells to BET protein degrader ARV-825. BET protein depletion confers additional advantages to circumvent acquired resistance to Trabectedin, a chemotherapy drug for LPS. Moreover, this study provides a framework for discovering and targeting of core oncogenic transcriptional programs in human cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.