The karyotypes and cytogenetic characteristics of flatfishes species Paralichthys orbignyanus, Paralichthys patagonicus, Citarichthys spilopterus and Etropus crossotus (Paralichthyidae), Bothus ocellatus (Bothidae) and Symphurus tessellatus (Cynoglossidae) were investigated by conventional [Giemsa staining, C-banding, Ag-and chromomycin (CMA 3 )-stainings] and molecular [in situ hybridization (ISH)] cytogenetic techniques. The results showed 2n ¼ 46 and FN ¼ 48 14sta) in B. ocellatus, and 2n ¼ 46 and FN ¼ 62 (46msm þ 62sta) in S. tessellatus. All species exhibited weak C-band positive segments in terminal and centromeric positions of some chromosome pairs. Silver staining of the nucleolus organizer regions (Ag-NOR) technique showed a single Ag-NOR-bearing chromosome pair in all species except E. crossotus. All these sites were CMA 3 positive and showed clear ISH signals after probing with a 18S rRNA probe. Etropus crossotus presented until seven chromosomes with Ag-NORs and CMA 3 positively stained segments in five chromosome pairs. Conversely only one chromosome pair was identified with the ISH experiments in this species. The available results show that the fishes of the order Pleuronectiformes experienced a marked chromosome evolution that included reduction in diploid number, mainly due to Robertsonian rearrangements, and several chromosome inversions.
The fish order Pleuronectiformes, composed of 14 families, has two suborders: Psettodoidei (with one family) and Pleuronectoidei (with thirteen families). The relationships among families of Pleuronectoidei and among the genera of their families have extensively been debated and a consensus has not yet been reached. In the present study, partial sequences of the 12S and 16S mitochondrial rRNA genes were obtained from 19 species belonging to the families Achiridae, Bothidae, Cynoglossidae, Paralichthyidae, Pleuronectidae, Scophthalmidae, and Soleidae. Additional sequences of 42 pleuronectiform species were obtained from GenBank. Phylogenetic analyses were conducted by the methods of maximum-parsimony, maximum-likelihood and Bayesian inference. Our results corroborate the monophyletic status of all families, excluding Paralichthyidae. In the family Achiridae, the genus Catathyridium (freshwater) was the sister group of Trinectes (saltwater), and Hypoclinemus (freshwater) was the sister group of Achirus (saltwater). Assuming that the putative ancestor of achirids lived in saltwater, it is suggested that the freshwater habitats in South America were colonized independently by different achirid lineages
Multiple paternity within litters occurs in various groups of mammals exhibiting different mating systems. Using seven genetic markers (i.e., microsatellites), we investigated the paternity of littermates in free-ranging wild boar (Sus scrofa) in a Mediterranean habitat. Using the software CERVUS 2.0 we estimated the probability of detecting multiple paternity across all loci (D), the probability of paternity (W) and a statistic D that allows the assignment of paternity to the most likely male with strict and relaxed levels of confidence. Multiple paternity was inferred for one of the nine analysed litters at the 80% confidence level. This suggests that a single male may control the access to receptive adult females and it shows that multiple paternity is not very common in the studied free-ranging wild boar population. Despite the possible occurrence of sperm competition and/or female cryptic choice, mate guarding seems to play a significant role in sexual selection. To better understand the wild boar's mating strategies further studies analysing the reproductive success of both sexes and under different environmental conditions should be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.