Plasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.
We report on ultrafast cooling of electrons in an initially strongly coupled ultracold plasma, created by ionization of a Bose-Einstein condensate using a femtosecond laser pulse. Our experiment grants direct access to the electron temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.