An efficient Th1-driven adaptive immune response requires activation of the T cell receptor and secretion of the T cell stimulatory cytokine IL-12 by activated antigen-presenting cells. IL-12 triggers Th1 polarization of naive CD4(+) T cells and secretion of IFN-gamma. We describe a new heterodimeric cytokine termed IL-27 that consists of EBI3, an IL-12p40-related protein, and p28, a newly discovered IL-12p35-related polypeptide. IL-27 is an early product of activated antigen-presenting cells and drives rapid clonal expansion of naive but not memory CD4(+) T cells. It also strongly synergizes with IL-12 to trigger IFN-gamma production of naive CD4(+) T cells. IL-27 mediates its biologic effects through the orphan cytokine receptor WSX-1/TCCR.
IL-23 is a heterodimeric cytokine composed of the IL-12p40 “soluble receptor” subunit and a novel cytokine-like subunit related to IL-12p35, termed p19. Human and mouse IL-23 exhibit some activities similar to IL-12, but differ in their capacities to stimulate particular populations of memory T cells. Like IL-12, IL-23 binds to the IL-12R subunit IL-12Rβ1. However, it does not use IL-12Rβ2. In this study, we identify a novel member of the hemopoietin receptor family as a subunit of the receptor for IL-23, “IL-23R.” IL-23R pairs with IL-12Rβ1 to confer IL-23 responsiveness on cells expressing both subunits. Human IL-23, but not IL-12, exhibits detectable affinity for human IL-23R. Anti-IL-12Rβ1 and anti-IL-23R Abs block IL-23 responses of an NK cell line and Ba/F3 cells expressing the two receptor chains. IL-23 activates the same Jak-stat signaling molecules as IL-12: Jak2, Tyk2, and stat1, -3, -4, and -5, but stat4 activation is substantially weaker and different DNA-binding stat complexes form in response to IL-23 compared with IL-12. IL-23R associates constitutively with Jak2 and in a ligand-dependent manner with stat3. The ability of cells to respond to IL-23 or IL-12 correlates with expression of IL-23R or IL-12Rβ2, respectively. The human IL-23R gene is on human chromosome 1 within 150 kb of IL-12Rβ2.
The early stages of lymphoid cell formation were studied by testing the differentiative potential of phenotypically defined subsets of CD34+ bone marrow cells. A subpopulation of CD34+ Lin- CD45RA+ cells expressing CD10 was isolated by flow cytometry. Such cells are CD38+, HLA-DR+, do not express significant levels of Thy-1 and c-kit, lack erythroid, myeloid, megakaryocytic potential, and give rise only to lymphoid T, B, natural killer (NK), and dendritic cells (DC) in kinetics and titration experiments. Limiting dilution analysis demonstrates the existence of multipotential B/NK/DC progenitor clones in the CD34hi Lin-CD10+ adult bone marrow cell population. Thus, nonprimitive progenitors for lymphoid cells and for DCs can be distinct from those of myeloid, megakaryocytic, and erythroid cells, implying that the DC lineage is developmentally more closely related to the lymphoid lineage than to the myeloid lineage. This study provides new insights into the organization and development of the human lympho-hematopoietic system.
The sequence of a novel hemopoietic cytokine was discovered in a computational screen of genomic databases, and its homology to mouse thymic stromal lymphopoietin (TSLP) suggests that it is the human orthologue. Human TSLP is proposed to signal through a heterodimeric receptor complex that consists of a new member of the hemopoietin family termed human TSLP receptor and the IL-7R α-chain. Cells transfected with both receptor subunits proliferated in response to purified, recombinant human TSLP, with induced phosphorylation of Stat3 and Stat5. Human TSLPR and IL-7Rα are principally coexpressed on monocytes and dendritic cell populations and to a much lesser extent on various lymphoid cells. In accord, we find that human TSLP functions mainly on myeloid cells; it induces the release of T cell-attracting chemokines from monocytes and, in particular, enhances the maturation of CD11c+ dendritic cells, as evidenced by the strong induction of the costimulatory molecules CD40 and CD80 and the enhanced capacity to elicit proliferation of naive T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.