Wood biomass ash (WBA) represents an environmental and economic problem for energy producers, and there have been extensive studies of using WBA as a raw material in construction products. This study investigates the leaching characteristics of WBA cement composites based on testing results. Currently, 70% of WBA is landfilled, and the rest is primarily used in agriculture; therefore, this study also addresses the leaching as a component of environmental safety of these two primary WBA management approaches. An analysis of the leaching characteristics of WBA, monolithic, and crushed cement composites is performed by replacing 15% of the cement with WBA. The study was conducted using three WBA samples collected from different power plants. Increased values of leaching from the WBA itself are indicative of potential issues that could occur in the case of its disposal. The study concluded that the WBA could be potentially environmentally acceptable as a raw material in the concrete industry because the heavy metals are stabilized within the cement matrix.
Agricultural biomass has great bioenergy potential due to its availability, and it is a carbon-free energy source. During biomass incineration, biomass ash is formed, which is still considered as a waste without proper disposal and management solutions. Various biomass ash utilization options were investigated, mainly concerning engineering issues (the mechanical characterization of newly produced building materials or products), and there is a lack of knowledge of environmental issues arising from this “waste” material utilization in civil engineering practice. The main aim of this research is discussion of a different agricultural biomass characteristics as a fuel, the impact of agricultural biomass ashes (ABA) on the mechanical properties of stabilized soil with a particular emphasis on the environmental impacts within this kind of waste management. The results of this study indicate improved geotechnical characteristics of low-plasticity clay stabilized by lime/ABA binder. In addition to mechanical characterization for materials embedded in road embankments and subgrades, appropriate environmental risk assessment needs to be performed, and the results of this study indicate that the amount of ABAs added to the soil for roadworks should not have adverse effects on the soil fauna in the surrounding environment.
This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.