Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.
Nitrogen and phosphorous loading drives eutrophication of aquatic systems. Lakes and reservoirs are often effective N and P sinks, but the variability of their biogeochemical dynamics is still poorly documented, particularly in tropical systems. To contribute to the extending of information on tropical reservoirs and to increase the insight on the factors affecting N and P cycling in aquatic ecosystems, we here report on a long-term N and P mass balance (2003–2018) in Valle de Bravo, Mexico, which showed that this tropical eutrophic reservoir lake acts as a net sink of N (−41.7 g N m−2 y−1) and P (−2.7 g P m−2 y−1), mainly occurring through net sedimentation, equivalent to 181% and 68% of their respective loading (23.0 g N m−2 y−1 and 4.2 g P m−2 y−1). The N mass balance also showed that the Valle de Bravo reservoir has a high net N atmospheric influx (31.6 g N m−2 y−1), which was 1.3 times the external load and likely dominated by N2 fixation. P flux was driven mainly by external load, while in the case of N, net fixation also contributed. During a period of high water level fluctuations, the net N atmospheric flux decreased by 50% compared to high level years. Our results outlining water regulation can be used as a useful management tool of water bodies, by decreasing anoxic conditions and net atmospheric fluxes, either through decreasing nitrogen fixation and/or promoting denitrification and other microbial processes that alleviate the N load. These findings also sustain the usefulness of long-term mass balances to assess biogeochemical dynamics and its variability.
Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) reservoir lake, where strong diurnal winds drive internal waves, boundary mixing, and hypolimnetic warming during stratification periods. We monitored VB during 21 years (2001–2021) when important water-level fluctuations occurred, affecting mixing and nutrient flux. Stability also varied as a function of water level. Hypolimnetic warming (0.009–0.028 °C day−1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (0.639–3.515 × 10−6 m3 day−1), vertical diffusivity coefficient KZ (2.5 × 10−6–13.6 × 10−6 m2 s−1), and vertical nutrient transport to the epilimnion. Nutrient flux from the metalimnion to the epilimnion ranged 0.42–5.99 mg P m−2day−1 for soluble reactive phosphorus (SRP) and 5.8–101.7 mg N m−2day−1 for dissolved inorganic nitrogen (DIN). Vertical mixing and the associated nutrient fluxes increase evidently as the water level decreases 8 m below capacity, and they can increase up to fivefold if the water level drops over 12 m. The observed changes related to water level affect nutrient recycling, ecosystemic metabolic balance, and planktonic composition of VB.
Nitrogen and phosphorous loading drives eutrophication of aquatic systems. Lakes and reservoirs are often effective N and P sinks, but information is needed on the variability of their biogeochemical dynamics, especially for tropical systems. A long-term N and P mass balance (2003-2018) in a small tropical eutrophic reservoir lake, Valle de Bravo (VB), Mexico, showed it is a net sink of N (-41.7 g N m-2 y-1), and P (-2.7 g P m-2 y-1), mainly through net sedimentation, equivalent to 181% and 68% of their respective loading (23.0 g N m-2 y-1 and 4.2 g P m-2 y-1). N mass balance showed that VB has a high net N atmospheric influx (31.6 g N m-2 y-1), which was 1.3 times the external load, and likely dominated by N2 fixation. During a period of high water level fluctuations (WLF), the net N atmospheric flux decreased by half compared to high level years. WLF can be a useful management tool to improve the trophic status of water bodies by decreasing anoxic conditions and net atmospheric fluxes, possibly through decreasing nitrogen fixation and/or promoting denitrification and other microbial processes that alleviate the N load.
Physical processes play important roles in controlling eutrophication and oligotrophication. In stratified lakes, internal waves can cause vertical transport of heat and nutrients without breaking the stratification, through boundary mixing events. Such is the case in tropical Valle de Bravo (VB) lake, where strong diurnal winds drive internal waves, boundary mixing and hypolimnetic warming during stratification periods. We monitored VB during 18 years (2001-2018) when important water-level fluctuations (WLF) occurred, affecting mixing and nutrient flux. Mean hypolimnetic temperature increase (0.06–1.04°C month-1) occurred in all the stratifications monitored. We analyzed temperature distributions and modeled the hypolimnion heat budget to assess vertical mixing between layers (26,618–140,526 m-3h-1), vertical diffusivity coefficient KZ (6.2x10-7–3.3x10-6 m2s-1) and vertical nutrient entrainment to epilimnion on monthly scale. Stability also varied as a function of WLF. Nutrient flux to the epilimnion ranged 0.36–5.99 mg m-2d-1 for soluble reactive phosphorus (SRP) and 5.8–97.1 mg m-2d-1 for dissolved inorganic nitrogen (DIN). During low water-level years, vertical nutrient fluxes increase and can account for up to >40% of the total external nutrients load to the lake. Vertical mixing changes related to WLF affect nutrient recycling, their flux to sediments, ecosystemic metabolic balance and planktonic composition of VB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.