Approximately 50% of childhood deafness is caused by mutations in specific genes. Autosomal recessive loci account for approximately 80% of nonsyndromic genetic deafness 1 . Here we report the identification of a new transmembrane serine protease (TMPRSS3; also known as ECHOS1) expressed in many tissues, including fetal cochlea, which is mutated in the families used to describe both the DFNB10 and DFNB8 loci. An 8-bp deletion and insertion of 18 monomeric (∼68-bp) β-satellite repeat units, normally present in tandem arrays of up to several hundred kilobases on the short arms of acrocentric chromosomes, causes congenital deafness (DFNB10). A mutation in a spliceacceptor site, resulting in a 4-bp insertion in the mRNA and a frameshift, was detected in childhood onset deafness (DFNB8). This is the first description of β-satellite insertion into an active gene resulting in a pathogenic state, and the first description of a protease involved in hearing loss.
Trisomy 21, or Down syndrome (DS), is the most common genetic cause of mental retardation. Changes in the neuropathology, neurochemistry, neurophysiology, and neuropharmacology of DS patients' brains indicate that there is probably abnormal development and maintenance of central nervous system structure and function. The segmental trisomy mouse (Ts65Dn) is a model of DS that shows analogous neurobehavioral defects. We have studied the global gene expression profiles of normal and Ts65Dn male and normal female mice brains (P30) using the serial analysis of gene expression (SAGE) technique. From the combined sample we collected a total of 152,791 RNA tags and observed 45,856 unique tags in the mouse brain transcriptome. There are 14 ribosomal protein genes (nine underexpressed) among the 330 statistically significant differences between normal male and Ts65Dn male brains, which possibly implies abnormal ribosomal biogenesis in the development and maintenance of DS phenotypes. This study contributes to the establishment of a mouse brain transcriptome and provides the first overall analysis of the differences in gene expression in aneuploid versus normal mammalian brain cells.
To estimate the error rate of the gene expression machinery and its possible age-related increase, we compared the occurrence of polymerase errors during replication and transcription in (A)/(T) runs, in DNA and RNA of young and old individuals and of early- and late-passage cultured fibroblasts. We analyzed three human genes: TPRD, TGFBR2, and ATRX containing stretches of (A)8, (A)10, and (T)13, respectively. The error rate was determined by sequencing 100 cloned PCR or RT-PCR fragments from each DNA and RNA sample. The error rates in replication and transcription increased with the stretch length. The pooled error rates for genomic DNA were: TPRD (A)8, TGFBR2 (A)10, and ATRX (T)13: 1%+/-0.41, 15.8%+/-1.3, and 31.3%+/-2.9, while those for RNA were: 3.8%+/-0.5, 19.3%+/-2.1, and 54.3%+/-1.8, respectively. The deletions of one nucleotide were the most frequent errors. In the replication analysis, a significant difference was found in old versus young individuals for the ATRX (T)13. In the transcription analysis, significantly higher error rates were obtained in old versus young individuals for the TPRD (A)8 and TGFBR2 (A)10. For these genes, the error rate in RNA isolated from fibroblasts was significantly higher than that in blood. The data show a trend of age-related increase in replication/transcription errors; however further studies are necessary to confirm this hypothesis, since the sample size is small. This imperfect fidelity of the gene expression process may explain the evolutionary disadvantage of nucleotide repeats within coding sequences, and that these repeats are targets for mutations in human diseases.
Trisomy 21, or Down syndrome (DS), is the most common genetic cause of mental retardation. Changes in the neuropathology, neurochemistry, neurophysiology, and neuropharmacology of DS patients' brains indicate that there is probably abnormal development and maintenance of central nervous system structure and function. The segmental trisomy mouse (Ts65Dn) is a model of DS that shows analogous neurobehavioral defects. We have studied the global gene expression profiles of normal and Ts65Dn male and normal female mice brains (P30) using the serial analysis of gene expression (SAGE) technique. From the combined sample we collected a total of 152,791 RNA tags and observed 45,856 unique tags in the mouse brain transcriptome. There are 14 ribosomal protein genes (nine underexpressed) among the 330 statistically significant differences between normal male and Ts65Dn male brains, which possibly implies abnormal ribosomal biogenesis in the development and maintenance of DS phenotypes. This study contributes to the establishment of a mouse brain transcriptome and provides the first overall analysis of the differences in gene expression in aneuploid versus normal mammalian brain cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.