Our study reinforces the role of rituximab as a GC-sparing agent in the challenging GC-dependent and multirelapsing MCD patients. In this emerging therapeutic field randomized studies with extended follow-up will add important information regarding optimal treatment, relapse and safety.
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
BackgroundThe cholinergic anti-inflammatory pathway (CAP) modulates inflammatory responses through the vagus nerve and the α-7-nicotinic acetylcholine receptor (α7nAChR) on macrophages and immune cells. Sympathetic/parasympathetic imbalance and chronic inflammation are both linked to poor outcome in dialysis patients. The aim of this study was to investigate CAP activity in these patients.MethodsTwenty dialysis patients, 12 hemodialysis (HD) and 8 peritoneal dialysis (PD) patients (12 male, 8 female; age range 47–83 years) and 8 controls (5 male, 3 female; age range 31–52 years) were analyzed for C-reactive protein (CRP), tumor necrosis factor (TNF), interleukin-1b (IL-1b), IL-6 and IL-10 at baseline. The cytokines were then assessed after whole blood stimulation ex vivo with lipopolysaccharide (LPS) (10 and 100 ng/mL) and again in the presence of 45 and 90 μmol/L GTS-21, a cholinergic α7nAChR agonist.ResultsCRP, TNF, IL-1 and IL-6 were significantly higher, whereas IL-10 was significantly lower at baseline in patients compared with controls. After LPS stimulation, TNF increased significantly more in patients than in controls but decreased to similar levels in both groups after addition of GTS-21. IL-6 attenuation was comparable with TNF and the IL-1b pattern was similar but remained significantly higher in patients. Interestingly, IL-10 increased after GTS-21 in a dose-dependent manner, but only in patients. Results in HD and PD patients did not differ.ConclusionsThe response of immune cells after LPS exposure and cholinergic stimulation suggests a functional CAP in dialysis patients. It may thus be possible to target the α7nAChR control of cytokine release as an anti-inflammatory strategy and thereby improve outcome in these patients.
Background Renal denervation (RDN) reduces sympathetic tone and may alter the sympathetic-parasympathetic balance. The autonomic nervous system is partly a regulator of innate immunity via the cholinergic anti-inflammatory pathway (CAP) which inhibits inflammation via the vagus nerve. Placental Growth Factor (PlGF) influences a neuro-immunological pathway in the spleen which may contribute to hypertension. The aim of this study was to investigate if modulation of renal sympathetic nerve activity affects CAP in terms of cytokine release as well as levels of PlGF. Methods Ten patients treated with RDN (Medtronic Inc), were analyzed for TNF, IL-1b and IL-10 and Lipopolysaccharide (LPS)-stimulated cytokine release before RDN, 1 day after and at 3- and 6-months follow-up. Four patients who underwent elective coronary angiography served as disease controls (DC). Results Baseline TNF was significantly lower 1 day after RDN ( p = 0.03). LPS-stimulated (0, 10 and 100 ng/mL) TNF and IL-1b were significantly lower 1 day after RDN (TNF p = 0.0009, p = 0.0009 and p = 0.001, IL-1b; p = 0.0001, p = 0.002 and p = 0.005). IL-10 was significantly higher one day after RDN (p = ns, p = 0.02 and p = 0.01). These differences however declined during follow up. A more marked TNF reduction was achieved with a cholinergic analogue, GTS-21, in LPS-stimulated whole blood as compared with samples without GTS-21. Cytokine levels in controls did not differ before and 1 day after coronary angiography. PlGF was significantly higher in RDN patients and DC compared with healthy controls but did not change during follow-up. Conclusion RDN has an immediate effect on TNF in vivo and cytokine release ex vivo but seems to wane over time suggesting that current RDN techniques may not have long-lasting immunomodulatory effect. Repeated and extended stimulation of CAP in resistant hypertension by targeting neural circuits may be a potential therapeutic strategy for treatment of both hypertension and inflammation. Electronic supplementary material The online version of this article (10.1186/s10020-019-0097-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.