Individual assignment and genetic mixture analysis are commonly utilized in contemporary wildlife and fisheries management. Although microsatellite loci provide unparalleled numbers of alleles per locus, their use in assignment applications is increasingly limited. However, next‐generation sequencing, in conjunction with novel bioinformatic tools, allows large numbers of microsatellite loci to be simultaneously genotyped, presenting new opportunities for individual assignment and genetic mixture analysis. Here, we scanned the published Atlantic salmon genome to identify 706 microsatellite loci, from which we developed a final panel of 101 microsatellites distributed across the genome (average 3.4 loci per chromosome). Using samples from 35 Atlantic salmon populations (n = 1,485 individuals) from coastal Labrador, Canada, a region characterized by low levels of differentiation in this species, this panel identified 844 alleles (average of 8.4 alleles per locus). Simulation‐based evaluations of assignment and mixture identification accuracy revealed unprecedented resolution, clearly identifying 26 rivers or groups of rivers spanning 500 km of coastline. This baseline was used to examine the stock composition of 696 individuals harvested in the Labrador Atlantic salmon fishery and revealed that coastal fisheries largely targeted regional groups (<300 km). This work suggests that the development and application of large sequenced microsatellite panels presents great potential for stock resolution in Atlantic salmon and more broadly in other exploited anadromous and marine species.
Pleistocene glaciations drove repeated range contractions and expansions shaping contemporary intraspecific diversity. Atlantic salmon (Salmo salar) in the western and eastern Atlantic diverged >600,000 years before present, with the two lineages isolated in different southern refugia during glacial maxima, driving trans‐Atlantic genomic and karyotypic divergence. Here, we investigate the genomic consequences of glacial isolation and trans‐Atlantic secondary contact using 108,870 single nucleotide polymorphisms genotyped in 80 North American and European populations. Throughout North America, we identified extensive interindividual variation and discrete linkage blocks within and between chromosomes with known trans‐Atlantic differences in rearrangements: Ssa01/Ssa23 translocation and Ssa08/Ssa29 fusion. Spatial genetic analyses suggest independence of rearrangements, with Ssa01/Ssa23 showing high European introgression (>50%) in northern populations indicative of post‐glacial trans‐Atlantic secondary contact, contrasting with low European ancestry genome‐wide (3%). Ssa08/Ssa29 showed greater intrapopulation diversity, suggesting a derived chromosome fusion polymorphism that evolved within North America. Evidence of potential selection on both genomic regions suggests that the adaptive role of rearrangements warrants further investigation in Atlantic salmon. Our study highlights how Pleistocene glaciations can influence large‐scale intraspecific variation in genomic architecture of northern species.
Global losses of biodiversity are occurring at an unprecedented rate, but causes are often unidentified. Genomic data provide an opportunity to isolate drivers of change and even predict future vulnerabilities. Atlantic salmon ( Salmo salar ) populations have declined range-wide, but factors responsible are poorly understood. Here, we reconstruct changes in effective population size ( N e ) in recent decades for 172 range-wide populations using a linkage-based method. Across the North Atlantic, N e has significantly declined in >60% of populations and declines are consistently temperature-associated. We identify significant polygenic associations with decline, involving genomic regions related to metabolic, developmental, and physiological processes. These regions exhibit changes in presumably adaptive diversity in declining populations consistent with contemporary shifts in body size and phenology. Genomic signatures of widespread population decline and associated risk scores allow direct and potentially predictive links between population fitness and genotype, highlighting the power of genomic resources to assess population vulnerability.
As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean FST = 0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans‐Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1–3 Mbp) on four chromosomes (Ssa06, Ssa13, Ssa16 and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium, despite no significant reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near‐fixed and potentially adaptive trans‐Atlantic differences concurrent with a background of high genome‐wide differentiation supports subspecies designation in Atlantic salmon.
Gene flow has tremendous importance for local adaptation, by influencing the fate of de novo mutations, maintaining standing genetic variation and driving adaptive introgression. Furthermore, structural variation as chromosomal rearrangements may facilitate adaptation despite high gene flow. However, our understanding of the evolutionary mechanisms impending or favouring local adaptation in the presence of gene flow is still limited to a restricted number of study systems. In this study, we examined how demographic history, shared ancestral polymorphism, and gene flow among glacial lineages contribute to local adaptation to sea conditions in a marine fish, the capelin (Mallotus villosus). We first assembled a 490‐Mbp draft genome of M. villosus to map our RAD sequence reads. Then, we used a large data set of genome‐wide single nucleotide polymorphisms (25,904 filtered SNPs) genotyped in 1,310 individuals collected from 31 spawning sites in the northwest Atlantic. We reconstructed the history of divergence among three glacial lineages and showed that they probably diverged from 3.8 to 1.8 million years ago and experienced secondary contacts. Within each lineage, our analyses provided evidence for large Ne and high gene flow among spawning sites. Within the Northwest Atlantic lineage, we detected a polymorphic chromosomal rearrangement leading to the occurrence of three haplogroups. Genotype–environment associations revealed molecular signatures of local adaptation to environmental conditions prevailing at spawning sites. Our study also suggests that both shared polymorphisms among lineages, resulting from standing genetic variation or introgression, and chromosomal rearrangements may contribute to local adaptation in the presence of high gene flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.