In the context of the Ginzburg Landau formalism proposed by Barci et al. in 2016 for nematic superconductivity, and by performing a numerical treatment based on the Shooting method, we analyze the behaviour of the radial distribution of the nematic order parameter when the superconducting order parameter reaches the typical non trivial saddle point. We consider the cases of a hollow cylindrical domain, with a disk or an annular domain as its cross section, whether the order parameter is subjected to Newmann or Dirichlet boundary conditions. We conclude that depending on the corresponding situation a non trivial solution holds if certain relations between the radii are satisfied. Moreover, we observe a saturation effect on each instances that constitutes a purely geometrical consequence on the relation between the typical sizes and shapes of the samples. These conclusions can be useful for further experimental realizations and extensions to the interaction of the nematic (superconducting) order parameters with electromagnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.