BackgroundFaces are crucial social stimuli, eliciting automatic processing associated with increased physiological arousal in observers. The level of arousal can be indexed by pupil diameter (the ‘Event‐Related Pupil Dilation’, ERPD). However, many parameters could influence the arousal evoked by a face and its social saliency (e.g. virtual vs. real, neutral vs. emotional, static vs. dynamic). A few studies have shown an atypical ERPD in autism spectrum disorder (ASD) patients using several kinds of faces but no study has focused on identifying which parameter of the stimulus is the most interfering with face processing in ASD.MethodsIn order to disentangle the influence of these parameters, we propose an original paradigm including stimuli along an ecological social saliency gradient: from static objects to virtual faces to dynamic emotional faces. This strategy was applied to 186 children (78 ASD and 108 typically developing (TD) children) in two pupillometric studies (22 ASD and 47 TD children in the study 1 and 56 ASD and 61 TD children in the study 2).ResultsStrikingly, the ERPD in ASD children is insensitive to any of the parameters tested: the ERPD was similar for objects, static faces or dynamic faces. On the opposite, the ERPD in TD children is sensitive to all the parameters tested: the humanoid, biological, dynamic and emotional quality of the stimuli. Moreover, ERPD had a good discriminative power between ASD and TD children: ASD had a larger ERPD than TD in response to virtual faces, while TD had a larger ERPD than ASD for dynamic faces.ConclusionsThis novel approach evidences an abnormal physiological adjustment to socially relevant stimuli in ASD.
This study aimed at evaluating the autonomic response to pleasant affective touch in children with Autism Spectrum Disorders (ASD) and age-matched typically developing (TD) peers, thanks to multiple autonomic nervous system (ANS) parameters and by contrasting CT (C-tactile fibers) high- vs. low-density territory stimulations. We measured pupil diameter, skin conductance, and heart rate during gentle stroking of two skin territories (CT high- and low-density, respectively, forearm and palm of the hand) in thirty 6–12-year-old TD children and twenty ASD children. TD children showed an increase in pupil diameter and skin conductance associated with a heart rate deceleration in response to tactile stimulations at the two locations. Only the pupil was influenced by the stimulated location, with a later dilation peak following CT low-density territory stimulation. Globally, ASD children exhibited reduced autonomic responses, as well as different ANS baseline values compared to TD children. These atypical ANS responses to pleasant touch in ASD children were not specific to CT-fiber stimulation. Overall, these results point towards both basal autonomic dysregulation and lower tactile autonomic evoked responses in ASD, possibly reflecting lower arousal and related to social disengagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.