We obtain two generalizations of a known theorem of A. Alam and M. Imdad (J. Fixed Point Theory Appl. 17 (2015) 693-702) showing that some standard proofs can be obtained involving only Cauchy sequences of the successive approximations. Suitable examples prove the effective generalization of our results in metric spaces not necessarily complete.
We obtain two generalizations of a known theorem of A. Alam and M. Imdad (Fixed Point Theory Appl. 17 (2015) 693–702) showing that some standard proofs can be obtained involving only Cauchy sequences of the successive approximations instead of the usual successive approximations sequences. Suitable examples prove the effective generalization of our results in metric spaces not necessarily complete.
We obtain some theorems for real increasing functions showing that elementary fixed point theory can bring to astonishing results by assuming only a few properties, some of which intrinsically possessed from these functions. An application is given for a theorem of quasi-compactness and a known result in posets is also recalled and applied to real intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.