Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF) or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG), a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B), in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma).
Recombinant proteins, commonly expressed in fusion with an affinity tag to facilitate purification, are often used as immunogens for polyclonal antibody production. Careful immunopurification of the antibody product is often the key to obtaining a high-specificity polyclonal antibody against the protein domain of interest. This study describes the purification and characterization of such an antibody directed against the adenomatous polyposis coli (APC) tumour suppressor. We used a combination of affinity chromatography and biosensor analysis to optimize and monitor antibody purification. This antibody was then characterized by immunoprecipitation, proteomic analyses and immunofluorescence staining and shown to be a valuable reagent for the study of APC biology. Using this antibody we successfully isolated and identified APC, using MS/MS, from transfected cell lines. A novel phosphorylation site on APC was identified at ser 1436. Similar strategies involving multiple immuno-affinity steps coupled with surface plasmon resonance (SPR), immunoprecipitation proteomic and immunofluorescence analyses should be generally applicable for the purification and characterization of other polyclonal antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.